Skip to main content Accessibility help

A worm-inspired new spatial hyper-redundant manipulator

  • Jaime Gallardo-Alvarado (a1), Raúl Lesso-Arroyo (a1) and J. Santos García-Miranda (a1)


In this work a novel spatial hyper-redundant manipulator inspired in the motions of the worms is introduced. The displacement analysis is presented in a semi-closed form solution, whereas the velocity and acceleration analyses are carried out by means of the theory of screws. Among typical applications of most hyper-redundant manipulators, interesting biomechanical applications such as the simulation of the motion of the spine are available for this new artificial worm.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Chirikjian, G. S., Theory and Applications of Hyper-Redundant Robotic Manipulators Ph.D. Thesis (California Institute of Technology, 1992).
2.Ionescu, T., “Standardization of terminology,” Mech. Mach. Theory 38, 607682 (2003).
3.Chirikjian, G. S. and Burdick, J. W., “Kinematics of Hyper-Redundant Locomotion with Applications to Grasping,” Proceedings IEEE International Conference on Robotics and Automation, Sacramento, CA (1991) pp. 720727.
4.Pettinato, J. S. and Stephanou, H. E., “Manipulability and Stability of a Tentacle Based Robot Manipulator,” Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ (1989), vol. 1, pp. 458463.
5.Paljug, E., Ohm, T. and Hayati, S., “The JPL Serpentine Robot: A 12-DOF System for Inspection,” Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995), pp. 31433148.
6.Kyriakopoulos, K. J., Migadis, G. and Sarrigeorgidis, K., “The NTUA snake: Design, planar kinematics and motion planning,” J. Robot. Syst. 16, 3772 (1999).
7.Hanan, M. W. and Walker, I. A., “Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots,” J. Robot. Syst. 20, 4563 (2003).
8.Zimmermann, K. and Zeidis, I., “Worm-like locomotion as a problem of nonlinear dynamics,” J. Theor. Appl. Mech. 45, 179187 (2007).
9.Zimmermann, K., Zeidis, I., Steigenberger, J., Behn, C., Böhm, V., Popp, J., Kolev, E. and Naletova, V. A., “Worm-Like Locomotion Systems (WLLS)—Theory, Control and Prototypes,” In: Climbing & Walking Robots, Towards New Applications (Zhang, H., ed.) (Itech Education and Publishing, Vienna, Austria, 2007) pp. 429456.
10.Behn, C. and Zimmermann, K., “Worm-Like locomotion Systems at the TU Ilmenau,” Proceedings of the 12th IFToMM World Congress, Besancon (2007).
11.Panjabi, M. M. and White, A. A., “Basic biomechanics of the spine,” Neurosurgery 7, 7693 (1980).
12.Dimnet, J., Pasquet, A., Krag, M. H. and Panjabi, M. M., “Cervical spine motion in the sagittal plane: Kinematic and geometric parameters,” J. Biomech. 15, 959969 (1982).
13.Gracovetsky, S. and Farfan, H., 1986The optimum spine,” Spine 11, 543.
14.Cholewicki, J. and McGill, S. M., “Lumbar spine kinematics obtained from videofluoroscopy,” J. Biomech. 25, 801 (1992).
15.Yoganandan, N., Pintar, F., Maiman, D. J., Reinartz, J., Sances, A., Larson, S. J. and Cusick, J. F., “Kinematics of the lumbar spine following pedicle screw plate fixation,” Spine 18, 504512 (1993).
16.Levin, S. M., “The Importance of Soft Tissue for Structural Support of the Body,” In: Prolotherapy in the Lumbar Spine and Pelvis, Spine: State of the Art Reviews (Dorman, T. A., ed.) (1995), vol. 9, issue 2, p. 357.
17.Willems, J. M., Jull, G. A. and Ng, J. K.-F., “An in vivo study of the primary and coupled rotations of the thoracic spine,” Clin. Biomech. 11 (6), 311316 (1996).
18.Faber, M. J., Schamhardt, H. C. and van Weeren, P. R., “Determination of 3D spinal kinematics without defining a local vertebral coordinate system,” J. Biomech. 32, 13551358 (1999).
19.Garcia, T. and Ravani, B., “A biomechanical evaluation of whiplash using a multi-body dynamic model,” ASME J. Biomech. Eng. 125, 254265 (2003).
20.Yoshikawa, H., Ishii, T., Mukai, Y., Hosono, N., Sakaura, H., Nakajima, Y., Sato, Y. and Sugamoto, K., “Kinematics of the upper cervical spine in rotation: In vivo three-dimensional analysis,” Spine 29, E139E144 (2004).
21.Ziddiqui, M., Karadimas, E., Nicol, M., Smith, F. W. and Wardlaw, D., “Effects of X-stop device on sagittal lumbar spine kinematics in spinal stenosis,” J. Spinal Disorden Technol. 19, 328333 (2006).
22.Ishii, T., Mukai, Y., Hosono, N., Sakaura, H., Fujii, R., Nakajima, Y., Tamura, S., Iwasaki, M., Yoshikawa, H. and Sugamoto, K., “Kinematics of the cervical spine in lateral bending: In vivo three-dimensional analysis,” Spine 31, 155160 (2006).
23.Konz, R. J., Fatone, S., Stine, R. L., Ganju, A., Gard, S. A. and Ondra, S. L., “A kinematic model to assess spinal motion during walking,” Spine 31, E898E906 (2006).
24.Chanceya, V. C., Ottaviano, D., Myers, B. S. and Nightingale, R. W., “A kinematic and anthropometric study of the upper cervical spine and the occipital condyles,” J. Biomech. 40, 19531959 (2007).
25.Gill, K. P., Bennett, S. J., Savelsbergh, G. J. P. and van Dieën, J. H., “Regional changes in spine posture at lift onset with changes in lift distance and lift style,” Spine 32, 15991604 (2007).
26.Jones, M., Holt, C. and Franyuti, D., “Developing a methodology for the analysis of infant spine kinematics for the investigation of the shaken baby syndrome,” J. Biomech. 41, S355 (2008).
27.Iqbal, K. and Roy, A., “A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model,” ASME J. Biomech. Eng. 131, 011002 (2009).
28.Zhu, S. J., Huang, Z. and Zhao, M. Y., “Feasible Human Spine Motion Simulators Based on Parallel Manipulators,” In: Parallel Manipulators, Towards New Applications (Wu, H., ed.) (I-Tech Education and Publishing, Vienna, Austria, 2008) pp. 497506.
29.Wolf, A., Brown, H. B., Casciola, R., Costa, A., Schwerin, M., Shamas, E. and Choset, H., “A Mobile Hyper Redundant Mechanism for Search and Rescue Tasks,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada (2003) pp. 28892895.
30.Chirikjian, G. S. and Burdick, J. W., “A modal approach to hyper-redundant kinematics,” IEEE Trans. Robot. Autom. 10, 343354 (1994).
31.Chirikjian, G. S. and Burdick, J. W., “Kinematically optimal hyper-redundant manipulator configurations,” IEEE Trans. Robot. Autom. 11, 794806 (1995).
32.Burdick, J. W., Radford, J. and Chirikjian, G. S., “A ‘sidewinding’ locomotion gait for hyper-redundant robots,” Adv. Robot. 9, 195216 (1995).
33.Wohlhart, K., “Displacement analysis of the general spherical Stewart platform,” Mech. Mach. Theory 29, 581589 (1994).
34.Gallardo-Alvarado, J., “Kinematics of a hybrid manipulator by means of screw theory,” Multibody Syst. Dyn. 14, 345366 (2005).
35.Li, W., Gao, F. and Zhang, J., “R-CUBE, a decoupled parallel manipulator only with revolute joints,” Mech. Mach. Theory 40, 467473 (2005).
36.Yang, G., I.-M. Chen, Chen, W. and Lin, W., “Kinematic design of a six-dof parallel-kinematics machine with decoupled-motion architecture,” IEEE Trans. Robot. 20, 876884 (2004).
37.Walker, M. R. and Dickey, J. P., “New methodology for multi-dimensional spinal joint testing with a parallel robot,” Med. Biol. Eng. Comput. 45, 297304 (2007).
38.Zhu, S. J., Huang, Z. and Zhao, M. Y., “Singularity analysis for six practicable 5-DoF fully-symmetrical parallel manipulators,” Mech. Mach. Theory 44, 710725 (2009).
39.Innocenti, C. and Parenti-Castelli, V., “Direct position analysis of the Stewart platform mechanism,” Mech. Mach. Theory 35, 611621 (1990).
40.Tsai, L.-W., Robot Analysis (John Wiley & Sons, New York, 1999).
41.Gallardo-Alvarado, J., Rodríguez-Castro, R. and Islam, Md. N., “Analytical solution of the forward position analysis of parallel manipulators that generate 3-RS structures,” Adv. Rob. 22, 215234 (2008).
42.Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Pérez-González, L. and Rico-Martínez, J. M., “Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory,” Multibody Syst. Dyn. 20, 307325 (2008).
43.Ball, R. S., A Treatise on the Theory of Screws (Cambridge University Press, Cambridge, 1900) (reprinted 1998).
44.Gallardo-Alvarado, J., Orozco-Mendoza, H. and Rodríguez-Castro, R., “Finding the jerk properties of multi-body systems using helicoidal vector fields,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 222, 22172229 (2008).
45.Rico, J. M. and Duffy, J., “An Application of screw algebra to the acceleration analysis of serial chains,” Mech. Mach. Theory 31, 445457 (1996).
46.Alici, G. and Shirinzadeh, B., “Topology optimization and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint,” Mech. Mach. Theory 39, 215235 (2004).
47.Rico, J. M., Gallardo, J. and Duffy, J., “A determination of singular configurations of serial non-redundant manipulators, and their escapement from singularities using Lie roducts,” In: Computational Kinematics '95 (Merlet, J.-P. and Ravani, , eds.) (Kluwer Academic Publishers, Niza, France, 1995) pp. 143152.
48.Rico, J. M., Gallardo, J. and Duffy, J., “Screw theory and higher order kinematic analysis of open serial and closed chains,” Mech. Mach. Theory 34, 559586 (1999).
49.van Dieën, J. H., Toussaint, H. M., Maurice, C. and Mientjes, M., “Fatigue-related changes in the coordination of lifting and their effect on low-back load,” J. Motor Behav. 28, 304314 (1996).


A worm-inspired new spatial hyper-redundant manipulator

  • Jaime Gallardo-Alvarado (a1), Raúl Lesso-Arroyo (a1) and J. Santos García-Miranda (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed