Skip to main content Accessibility help

Vodec: A fast Voronoi algorithm for car-like robot path planning in dynamic scenarios

  • Diego A. López García (a1) and Fernando Gomez-Bravo (a1)


Traditionally, robot motion planners use Voronoi Diagrams for generating admissible paths that connect an initial with a final configuration. When dynamic scenarios are involved, these techniques imply a heavy computational cost. The novelty of the technique presented here is that it can provide fast and particularly suitable routes without considering the full scenario if environmental changes appear. The new method is designed to work with a post-process technique in order to provide admissible paths for car-like robots coping with kinematic constraints. This new approach is capable of supplying continuous paths and also elaborate maneuvers if cluttered environments are involved.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Aichholzer, O. and Aurenhammer, F., “Straight skeletons for general polygonal figures,” Technical Report 432, (Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria, 1995).
2.Aurenhammer, F. and Klein, R., “Voronoi diagrams,” Handbook of Computational Geometry (Sack, J. and Urrutia, G., eds.) (Elsevier, Amsterdam, Netherlands, 2000) pp. 201290.
3.Cuesta, F., Gómez-Bravo, F. and Ollero, A., “Parking manoeuvres of industrial-like electrical vehicles with and without trailer,” IEEE Trans. Ind. Electron. 51 (2), 257269 (2004).
4.Gomez-Bravo, F., López, D., Real, F. J., Merino, L. and Sánchez-Matamoros, J. M. l., “Integrated Path Planning and Tracking for Autonomous Car-Like Vehicles Maneuvering,” Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics, Milan, Italy (2009) pp. 457464.
5.Gomez-Bravo, F., Cuesta, F., Ollero, A. and Viguria, L. A., “Continuous curvature path generation based on β-spline curves for parking manoeuvres,” Robot. Auton. Syst. 56 (4), 360372 (2008).
6.Martin, J. M., López, D., Gomez-Bravo, F. and Blanco, A., “Application of multicriteria decision-making techniques to manoeuvre planning in nonholonomic robots,” Expert Syst. Appl. 37, 39623976 (2010).
7.Gomez-Bravo, F., Ollero, A., Cuesta, F. and López, D., “A new approach for car like robots manoeuvring based on RRT,” Robótica: Automaçao, Controlo e Instrumentaçao, 71, 1014 (2008).
8.Gomez-Bravo, F., Ollero, A., Cuesta, F. and Lopez, D., “Rrt-d: A Motion Planning Approach for Autonomous Vehicles Based on Wireless Sensor Network Information,” Proceedings of the 6th IFAC Symposium on Intelligent AutonomousVehicles, Toulouse, Francia (2007) pp. C.D.
9.Fortune, S. J., “A sweepline algorithm for Voronoi diagrams,” Algorithmica, 2, 153174 (1987).
10.Latombe, J. C., Robot Motion Planning (Kluwer Academic Pulisher, Boston, MA 1991).
11.Laumont, J. P., Jacobs, P. E., Taix, M. and Murray, M., “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Autom., 10 (5), 577593 (1994).
12.LaValle, S. M., Planning Algorithms (Cambridge University Press, Cambridge, U.K. 2006).
13.LaValle, S. M., “Rapidly-Exploring Random Trees: Progress and Prospects,” In: Algorithmic and Computational Robotics: New Directions (Peters, A. K., ed.) (Wellesley, MA, 2001) pp. 293308.
14.McAllister, M., Kirkpatrick, D. and Snoeyink, J., “A compact piecewise-linear Voronoi diagram for convex sites in the plane,” Discrete Comput. Geom. 15, 73105 (1996).
15.Ollero, A., Arrue, B. C., Ferruz, J., Heredia, G., Cuesta, F., Lopez-Pichaco, F. and Nogales, C., “Control and perception componenets for autonomous vehicle guidance. application to the romeo vehicles,” Control Eng. Pract. 7, 12911299 (1999).
16.Papadopoulou, E. and Lee, D. T., “The L Voronoi Diagram of segments and VLSI applications,” Int. J. Comput. Geom. Appl. 11 (5), 503528 (2001).
17.Lamiraux, F. and Lamond, J. P., “Smooth motion planning for car-like vehicles,” IEEE Trans. Robot. Autom. 17 (4), 498502 (2001).
18.Rezaei, S., Guivant, J. and Nebot, E., “Car-Like Robot Path Following in Large Unstructured Environments,” Proceedings of 1993 IEEE International Conference on Intelligent Robots and Systems, Las Vegas, USA (2003) pp. 24682473.
19.Baran, N. and Kumar, D., “Automatic design of fuzzy logic controller using a genetic algorithm for collision-free, time-optimal navigation of a car-like robot,” Int. J. Hybrid Intell. Syst. 2 (3), 161187 (2005).
20.Esquivel, W. D. and Chiang, L. E., “Nonholonomic path planning among obstacles subject to curvature restrictions,” Robotica 20, 4958 (2002).
21.Rosales, A., Scaglia, G.o., Mut, V. and di Sciascio, F., “Trajectory tracking of mobile robots in dynamic environments a linear algebra approach,” Robotica 27, 981997 (2009).
22.Xidias, E. K. and Aspragathos, N. A., “Motion planning for multiple non-holonomic robots: a geometric approach,” Robotica 26, 525536 (2008).
23.López, D., Nuevas aportaciones en algoritmos de planificación para la ejecución de maniobras en robots autónomos no holónomos Ph. D. dissertation (Spain: University of Huelva, 2011).
24.Razvan, S. and Urbano, N., “Trajectory planning and sliding-mode control based trajectory-tracking for cybercars,” Integr. Comput.-Aided Eng. 14 (1), 3348 (2007).
25.Sipahioglu, A., Yazici, A., Parlaktuna, O. and Gurel, U., “Real-time tour construction for a mobile robot in a dynamic environment,”. Robot. Auton. Syst. 56 (4), 289384 (2008).


Related content

Powered by UNSILO

Vodec: A fast Voronoi algorithm for car-like robot path planning in dynamic scenarios

  • Diego A. López García (a1) and Fernando Gomez-Bravo (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.