Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T10:37:44.611Z Has data issue: false hasContentIssue false

A trocar puncture robot for assisting venipuncture blood collection

Published online by Cambridge University Press:  27 March 2024

Zhikang Yang
Affiliation:
Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Shikun Wen
Affiliation:
Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Qian Qi
Affiliation:
Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Zhuhai Lv*
Affiliation:
Department of Neurosurgery, Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
Aihong Ji*
Affiliation:
Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
*
Corresponding authors: Zhuhai Lv, Email: lvzhuhai@163.com; Aihong Ji, Email: meeahji@nuaa.edu.cn
Corresponding authors: Zhuhai Lv, Email: lvzhuhai@163.com; Aihong Ji, Email: meeahji@nuaa.edu.cn

Abstract

The venous blood test is a prevalent auxiliary medical diagnostic method. Venous blood collection equipment can improve blood collection’s success rate and stability, reduce the workload of medical staff, and improve the efficiency of diagnosis and treatment. This study proposed a rigid-flexible composite puncture (RFCP) strategy, based on which a small 7-degree-of-freedom (DOF) auxiliary venipuncture blood collection (VPBC) robot using a trocar needle was designed. The robot consists of a position and orientation adjustment mechanism and a RFCP end-effector, which can perform RFCP to avoid piercing the blood vessel’s lower wall during puncture. The inverse kinematics solution and validation of the robot were analyzed based on the differential evolution algorithm, after which the quintic polynomial interpolation algorithm was applied to achieve the robot trajectory planning control. Finally, the VPBC robot prototype was developed for experiments. The trajectory planning experiment verified the correctness of the inverse kinematics solution and trajectory planning, and the composite puncture blood collection experiment verified the feasibility of the RFCP strategy.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mccann, M., Einarsdóttir, H., Van Waeleghem, J.-P., Murphy, F. and Sedgewick, J., “Vascular access management 1: An overview,” J. Renal. Care 34(2), 7784 (2008).CrossRefGoogle ScholarPubMed
Walsh, G., “Difficult peripheral venous access: Recognizing and managing the patient at risk,” J. Vasc. Access 13(4), 198203 (2008).CrossRefGoogle Scholar
Armin, S., John, S., H.Kevin, S., Leah, L. and Tofy, M., “Failed attempts and improvement strategies in peripheral intravenous catheterization,” Bio-Med Mater Eng. 23(1-2), 93108 (2013).Google Scholar
Boer, T. D., Steinbuch, M., Neerken, S. and Kharin, A., “Laboratory study on needle-tissue interaction: Towards the development of an instrument for automatic venipuncture,” J. Mech. Med. Biol 7(03), 325335 (2007).CrossRefGoogle Scholar
Liu, S. T., Harewood, L., Chen, B. and Chen, C., “A skeletal prototype of surgical arm based on dual-triangular mechanism,” J. Mech. Rob. 8(4), 041015042016 (2016).CrossRefGoogle Scholar
Haidegger, T., “Autonomy for surgical robots: Concepts and paradigms,” IEEE Trans. Med. Rob. & Bio 1(2), 6576 (2019).CrossRefGoogle Scholar
Li, Z., Milutinovic, D. and Rosen, J., “Design of a multi-arm surgical robotic system for dexterous manipulation,” J. Mech. Rob. 8(6), 061017062016 (2016).CrossRefGoogle Scholar
Perry, T. S., “Profile: Veebot drawing blood faster and more safely than a human can,” IEEE Spectrum 50(8), 2323 (2013).CrossRefGoogle Scholar
Chen, A. I., Nikitczuk, K., Nikitczuk, J., Maguire, T. and Yarmush, M., “Portable robot for autonomous venipuncture using 3D near infrared image guidance,” Technology 1(01), 72872013 (2013).CrossRefGoogle ScholarPubMed
Balter, M. L., Chen, A. I., Maguire, T. J. and Yarmush, M. L., “The system design and evaluation of a 7-DOF image-guided venipuncture robot,” IEEE Trans. Rob 31(4), 10441053 (2015).CrossRefGoogle ScholarPubMed
Chen, A. I., Balter, M., Maguire, T. J. and Yarmush, M. L., ”3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance,” In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9902, (2016) pp. 388396.Google Scholar
Balter, M. L., Chen, A. I., Maguire, T. J. and Yarmush, M. L., “Adaptive kinematic control of a robotic venipuncture device based on stereo vision, ultrasound, and force guidance,” IEEE Trans. Ind. Electron 64(2), 16261635 (2017).CrossRefGoogle ScholarPubMed
Li, F., Huang, Z. and Xu, L., ”Path Planning of 7-DOF Venipuncture Robot Arm Based on Improved A-star and Collision Detection Algorithms,” In: IEEE International Conference on Robotics and Biomimetics (ROBIO), (2019) pp. 29712976.Google Scholar
He, T., Guo, C. and Jiang, L., ”Automatic Venous Segmentation in Venipuncture Robot Using Deep Learning,” In: IEEE International Conference on Real-time Computing and Robotics (RCAR), (2021) pp. 614619.Google Scholar
He, T., Guo, C., Liu, H. and Jiang, L., “Research on robotic humanoid venipuncture method based on biomechanical model,” J. Intell. Robot Syst. 106(1), 301 (2022).CrossRefGoogle ScholarPubMed
Ji, J., Zhao, Y., Xie, T., Du, F. and Qi, P., ”Automated Vein Segmentation from NIR Images Using a Mixer-UNet Model,” In: International Conference on Intelligent Robotics and Applications, 13458, (2022) pp. 6475.Google Scholar
Zhao, Y., Ji, J., Xie, T., Du, F. and Qi, P., ”Vessel Site Selection for Autonomous Cannulation Under NIR Image Guidance,” In: International Conference on Intelligent Robotics and Applications, 13458, (2022) pp. 8899.Google Scholar
Li, B., Li, J. and Li, B., “Research on trajectory planning of venous blood sampling robot based on NURBS curve,” Cont. Eng. China 29(9), 16381644 (2022).Google Scholar
Hamzah, A. A., Ramasamy, S., Adnan, A. S. and Khan, A. H., “Pattern of superficial venous of the cubital fossa among volunteers in a tertiary hospital,” Trop. Med. Surg 02(02), 1000164 (2014).Google Scholar
Yuko, M., Chiba, S. and Tonosaki, Y., “Topographical anatomy of superficial veins, cutaneous nerves, and arteries at venipuncture sites in the cubital fossa,” Anat. Sci. Int. 88, 4657 (2013).Google Scholar
Koskinopoulou, M., Cheng, Z., Acemoglu, A., Caldwell, D. G. and Mattos, L. S., “Robotic devices for assisted and autonomous intravenous access,” IEEE T. Med. Robot Bio 5(2), 170179 (2023).CrossRefGoogle Scholar
Chen, A. I., Balter, M. L., Maguire, T. J. and Yarmush, M. L., “Deep learning robotic guidance for autonomous vascular access,” Nat. Mach. Intell. 2(2), 104115 (2020).CrossRefGoogle Scholar
Dai, X., Zhang, Y., Jiang, J. and Li, B., “Image-guided robots for low dose rate (LDR) prostate brachytherapy: Perspectives on safety in design and use,” Int. J. Med. Robot Comput. Assist. Surg 17(3), e2239 (2021).CrossRefGoogle Scholar
Jiang, J.-G., Zuo, H., Zhang, Y.-D., Huang, Z.-Y., Guo, X.-W. and Xu, Y., “Design and experiment of assistive mechanism for adjustment of transrectal ultrasound probe,” Appl. Bionics. Biomech 2020, 8846073 (2020).CrossRefGoogle ScholarPubMed
Qin, G., Ji, A., Cheng, Y., Zhao, W., Pan, H., Shi, S. and Song, Y., “Design and motion control of an under-actuated snake arm maintainer,” Robotica 40(6), 17631782 (2022).CrossRefGoogle Scholar
Liu, Y., Xi, J., Bai, H., Wang, Z. and Sun, L., “A general robot inverse kinematics solution method based on improved PSO algorithm,” IEEE Access 9, 3234132350 (2021).Google Scholar
Wang, W., Cao, Y., Wang, X. and Yu, L., “Closed-form solution of inverse kinematics for a minimally invasive surgical robot slave manipulator similar to da vinci robot system,” ASME J. Eng. Medical Diagnostics. 3(2), 021113022020 (2020).CrossRefGoogle Scholar
Han, X., Yin, M. and Liu, X., “Solution of inverse kinematics and movement trajectory simulation for 6R robot,” J. Sichuan University 47(6), 185190 (2015).Google Scholar
Guo, J., Zhu, Z. and Wang, X., “Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot,” J.Tsinghua University 58(3), 292297 (2018).Google Scholar
Xie, X., Fan, S. and Zhou, X., “Inverse kinematics of manipulator based on the improved differential evolution algorithm,” ROBOT 41(1), 5057 (2019).Google Scholar
Dong, H., Li, C. and Yao, L., “An adaptive dynamic differential evolution algorithm for solving inverse kinematics of redundant manipulators,” J. Fuzhou University 49(4), 491499 (2021).Google Scholar
Elsayed, S. M., Sarker, R. A. and Essam, D. L., “An improved self-adaptive differential evolution algorithm for optimization problems,” IEEE T. Ind. Inform 9(1), 8999 (2013).CrossRefGoogle Scholar
Tam, B., Linh, T. and Nguyen, T., “DE-based algorithm for solving the inverse kinematics on a robotic arm manipulators,” J. Physics: Conf. Series 1, 012008012021 (1922).Google Scholar
Das, S. J. and Suganthan, P. N., “Differential evolution: A survey of the state-of-the-art,” IEEE Trans. Evol. Comput. 15(1), 431 (2011).CrossRefGoogle Scholar
Mayer, D. G., Kinghorn, B. P. and Archer, A. A., “Differential evolution – an easy and efficient evolutionary algorithm for model optimization,” Agr. Syst. 83, 315328 (2005).CrossRefGoogle Scholar
Elsayed, S. M., Sarker, R. A. and Essam, D. L., “An improved self-adaptive differential evolution algorithm for optimization problems,” IEEE T. Ind. Inform 9(1), 8999 (2013).CrossRefGoogle Scholar
Piazzi, A. and Visioli, A., “Global minimum-time trajectory planning of mechanical manipulators using interval analysis,” Int. J. Control 71(4), 631652 (1998).CrossRefGoogle Scholar
Shafaat, A. B. and Bertrand, T., “Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators, robot auton,” Robot Auton. Syst. 29, 257268 (1999).Google Scholar