Skip to main content Accessibility help
×
Home

A survey on evolutionary-aided design in robotics

  • Shanker G. Radhakrishna Prabhu (a1), Richard C. Seals (a1), Peter J. Kyberd (a1) and Jodie C. Wetherall (a1)

Summary

The evolutionary-aided design process is a method to find solutions to design and optimisation problems. Evolutionary algorithms (EAs) are applied to search for optimal solutions from a solution space that evolves over several generations. EAs have found applications in many areas of robotics. This paper covers the efforts to determine body morphology of robots through evolution and body morphology with the controller of robots or similar creatures through co-evolution. The works are reviewed from the perspective of how different algorithms are applied and includes a brief explanation of how they are implemented.

Copyright

Corresponding author

*Corresponding author. E-mail: s.prabhu@gre.ac.uk

References

Hide All
1. Darwin, C., The Origin of Species by Means of Natural Selection: Or, the Preservation of Favored Races in the Struggle for Life (John Murray, London, UK, 1859).
2. Mendel, G., “Experiments in Plant Hybridization (1865),” In: Classic Papers in Genetics (Peters, J. E., ed.) (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1959) (1), pp. 119.
3. Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, Cambridge, MA, USA, 1992).
4. Doncieux, S., Mouret, J. B., Bredeche, N. and Padois, V., “Evolutionary Robotics: Exploring New Horizons,” In: New Horizons in Evolutionary Robotics, vol. 341(1) (Springer, Berlin-Heidelberg, 2011) pp. 325.
5. Nolfi, S. and Floreano, D., Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, Cambridge, MA, USA, 2000).
6. Nichele, S., “The coevolution of robot controllers (“brains”) and morphologies (“bodies”)–challenges and opportunities,” online, 2015. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.2391&rep=rep1&type=pdf. Accessed Mar. 20, 2017.
7. Vargas, P. A., Di Paolo, E. A., Harvey, I. and Husbands, P., The Horizons of Evolutionary Robotics (MIT Press, Cambridge, MA, USA, 2014).
8. Bongard, J. C., “Evolutionary robotics,” Communications of the ACM 56 (8), 7483 (2013).
9. Taylor, T. and Massey, C., “Recent developments in the evolution of morphologies and controllers for physically simulated creatures,” Artif. Life 7 (1), 7787 (2001).
10. Floreano, D., Mondada, F., Perez-Uribe, A. and Roggen, D., “Evolution of Embodied Intelligence,” In: Embodied Artificial Intelligence, vol. 3139(23) (Springer, Berlin-Heidelberg, 2004) pp. 293311.
11. Lipson, H., “Evolutionary robotics and open-ended design automation,” Biomimetics 17 (9), 139155 (2005).
12. Pfeifer, R., Lungarella, M. and Iida, F., “Self-organization, embodiment, and biologically inspired robotics.,” Science 318 (5853), 10881093 (2007).
13. Winfield, A. F. T. and Timmis, J., “Evolvable Robot Hardware,” In: Evolvable Hardware (13) (Springer, Berlin-Heidelberg, 2015) pp. 331348.
14. Nolfi, S., Bongard, J., Husbands, P. and Floreano, D., “Evolutionary Robotics,” In: Springer Handbook of Robotics, 2nd ed, vol. 236(76), 20352068, (Springer International Publishing, Cham, 2016) pp. 20352068.
15. Eiben, A. E. and Smith, J., “From evolutionary computation to the evolution of things,” Nature 521 (7553), 476482 (2015).
16. Gupta, S. and Singla, E., “Evolutionary robotics in two decades: A review,” Sadhana 40 (4), 11691184 (2015).
17. Nelson, A. L., Barlow, G. J. and Doitsidis, L., “Fitness functions in evolutionary robotics: A survey and analysis,” Rob. Auton. Syst. 57 (4), 345370 (2009).
18. Walker, J., Garrett, S. and Wilson, M., “Evolving controllers for real robots: A survey of the literature,” Adapt. Behav. 11 (3), 179203 (2003).
19. Teo, J., “Darwin+ Robots= Evolutionary Robotics: Challenges in Automatic Robot Synthesis,” Proceedings of the International Conference on Artificial Life (2004) pp. 7–13.
20. Kicinger, R., Arciszewski, T. and De Jong, K., “Evolutionary computation and structural design: A survey of the state-of-the-art,” Comput. Struct. 83 (23), 19431978 (2005).
21. Barca, J. C. and Sekercioglu, Y. A., “Swarm robotics reviewed,” Robotica 31 (3), 345359 (2013).
22. Ahmadzadeh, H., Masehian, E. and Asadpour, M., “Modular Robotic Systems: Characteristics and Applications,” J. Intell. Rob. Syst. 81 (3), 317357 (2016).
23. Alattas, R. J., Patel, S. and Sobh, T. M., “Evolutionary Modular Robotics: Survey and Analysis,” J. Intell. Robot. Syst. (2018). https://doi.org/10.1007/s10846-018-0902-9.
24. Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. Jin and Kim, S., “Soft robot review,” Int. J. Control Autom. Syst. 15 (1), 113 (2017).
25. Pfeifer, R., Iida, F. and Lungarella, M., “Cognition from the bottom up: on biological inspiration, body morphology, and soft materials,” Trends Cognit. Sci. 18 (8), 404413 (2014).
26. Aguilar, W., a-Bonfil, G. S., Froese, T. and Gershenson, C., “The past, present, and future of artificial life,” Front. Robot. AI 1 (3), 4463 (2014).
27. Doursat, R., Sayama, H. and Michel, O., “A review of morphogenetic engineering,” Nat. Comput. 12 (4), 517535 (2013).
28. Stanley, K. O., “Why Evolutionary Robotics Will Matter,” In: New Horizons in Evolutionary Robotics, vol. 341(3) (Springer, Berlin-Heidelberg, 2011) pp. 3741.
29. Meyer, J. A., Husbands, P. and Harvey, I., “Evolutionary Robotics: A Survey of Applications and Problems,” In: Evolutionary Robotics, vol. 1468(1) (Springer, Berlin Heidelberg, Berlin, Heidelberg, 1998) pp. 121.
30. Silva, F., Duarte, M., Correia, L., Oliveira, S. M. and Christensen, A. L., “Open issues in evolutionary robotics,” Evol. Comput. 24 (2), 205236 (2016).
31. Bongard, J., “Why Morphology Matters,” In: The Horizons of Evolutionary Robotics (6) (The MIT Press, Cambridge, MA, USA, 2014) pp. 125152.
32. Eiben, A. E. and Smith, J. E., “Towards the evolution of things,” SIGEVOlution 8 (3), 36 (2016).
33. Eiben, A. E. and Smith, J. E., Introduction to Evolutionary Computing (Springer, Berlin-Heidelberg, 2015).
34. Samuelsen, E., Glette, K. and Torresen, J., “A Hox Gene Inspired Generative Approach to Evolving Robot Morphology,” Proceedings of the Genetic and Evolutionary Computation Conference (2013) pp. 751–758.
35. Parker, G. B., Duzevik, D., Anev, A. S. and Georgescu, R., “Morphological Evolution of Dynamic Structures in a 3-Dimensional Simulated Environment,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2007) pp. 534–540.
36. Moore, J. M. and McKinley, P. K., “Evolution of an Amphibious Robot with Passive Joints,” Proceedings of the IEEE Congress on Evolutionary Computation (2013) pp. 1443–1450.
37. Chocron, O. and Bidaud, P., “Genetic Design of 3D Modular Manipulators,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (1997) pp. 223–228.
38. Núñez Cruz, R. S. and Zannatha, J. M. Ibarra, “Efficient mechanical design and limit cycle stability for a humanoid robot: An application of genetic algorithms,” Neurocomputing 233, 7280 (2017).
39. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E. and Eiben, A. E., “A Robotic Ecosystem with Evolvable Minds and Bodies,” Proceedings of the IEEE International Conference on Evolvable Systems (2014) pp. 165–172.
40. Larpin, K., Pouya, S., van den Kieboom, J. and Ijspeert, A. J., “Co-Evolution of Morphology and Control of Virtual Legged Robots for a Steering Task,” Proceedings of the IEEE International Conference on Robotics and Biomimetics (2011) pp. 2799–2804.
41. Buason, G., Bergfeldt, N. and Ziemke, T., “Brains, bodies, and beyond: competitive co-evolution of robot controllers, morphologies and environments,” Genet. Program. Evolvable Mach. 6 (1), 2551 (2005).
42. Endo, K., Maeno, T. and Kitano, H., “Co-evolution of Morphology and Walking Pattern of Biped Humanoid Robot Using Evolutionary Computation: Designing the Real Robot,” Proceedings of the IEEE International Conference on Robotics and Automation (2003) pp. 1362–1367.
43. Mautner, C. and Belew, R. K., “Evolving robot morphology and control,” Artif. Life Rob. 4 (3), 130136 (2000).
44. Bongard, J., “The utility of evolving simulated robot morphology increases with task complexity for object manipulation,” Artif. Life 16 (3), 201223 (2010).
45. Chedmail, P. and Ramstein, E., “Robot Mechanism Synthesis and Genetic Algorithms,” Proceedings of the IEEE International Conference on Robotics and Automation (1996) pp. 3466–3471.
46. Shiakolas, P. S., Koladiya, D. and Kebrle, J., “Optimum Robot Design Based on Task Specifications Using Evolutionary Techniques and Kinematic, Dynamic, and Structural Constraints,” Proceedings of the International Mechanical Engineering Congress and Exposition, vol. 2002 (2002) pp. 825–832.
47. Rommerman, M., Kuhn, D. and Kirchner, F., “Robot Design for Space Missions Using Evolutionary Computation,” Proceedings of the IEEE Congress on Evolutionary Computation (2009) pp. 2098–2105.
48. Sims, K., “Evolving Virtual Creatures,” Proceedings of the Annual Conference on Computer Graphics (1994) pp. 15–22.
49. Lessin, D., Fussell, D. and Miikkulainen, R., “Adopting Morphology to Multiple Tasks in Evolved Virtual Creatures,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2014) pp. 247–254.
50. Pilat, M. L., Ito, T., Suzuki, R. and Arita, T., “Evolution of Virtual Creature Foraging in a Physical Environment,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2012) pp. 423–430.
51. Azarbadegan, A., Broz, F. and Nehaniv, C. L., “Evolving Sims's Creatures for Bipedal Gait,” Proceedings of the IEEE Symposium on Artificial Life (2011) pp. 218–224.
52. Chaumont, N., Egli, R. and Adami, C., “Evolving virtual creatures and catapults,” Artif. Life 13 (2), 139157 (2007).
53. O'kelly, M. and Hsiao, K., “Evolving Simulated Mutually Perceptive Creatures for Combat,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2004) pp. 113–118.
54. Faiña, A., Bellas, F., Orjales, F., Souto, D. and Duro, R. J., “An evolution friendly modular architecture to produce feasible robots,” Robot. Auton. Syst. 63, 195205 (2015).
55. Lipson, H., “Evolutionary synthesis of kinematic mechanisms,” Artif. Intell. Eng. Des. Anal. Manuf. 22 (3), 195205 (2008).
56. Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L. and Floreano, D., “RoboGen: Robot Generation through Artificial Evolution,” Proceedings of the Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems (2014) pp. 136–137.
57. Gregor, M., Spalek, J. and Capák, J., “Use of Context Blocks in Genetic Programming for Evolution of Robot Morphology,” Proceedings of the International Conference ELEKTRO (2012) pp. 286–291.
58. Miconi, T., “In Silicon No One Can Hear You Scream: Evolving Fighting Creatures,” In: Genetic Programming, vol. 4971(3) (Springer, Berlin-Heidelberg, 2008) pp. 2536.
59. Macinnes, I. and Di Paolo, E., “Crawling Out of the Simulation: Evolving Real Robot Morphologies Using Cheap Reusable Modules,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2004) pp. 94–99.
60. Lee, W. P., Hallam, J. and Lund, H. H., “A Hybrid GP/GA Approach for Co-evolving Controllers and Robot Bodies to Achieve Fitness-Specified Tasks,” Proceedings of the IEEE International Conference on Evolutionary Computation (1996) pp. 384–389.
61. Lee, W. P., “Evolving Autonomous Robot: From Controller to Morphology,” IEICE Trans. Inf. Syst. 83 (2), 200210 (2000).
62. Lessin, D., Fussell, D. and Miikkulainen, R., “Open-Ended Behavioral Complexity for Evolved Virtual Creatures,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2013) pp. 335–342.
63. Lund, H. H., “Co-evolving Control and Morphology with LEGO Robots,” In: Morpho-functional Machines: The New Species (4) (Springer, Tokyo, Japan, 2003) pp. 5979.
64. Risi, S., Cellucci, D. and Lipson, H., “Ribosomal Robots: Evolved Designs Inspired by Protein Folding,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2013) pp. 263–270.
65. Hornby, G. S. and Pollack, J. B., “Body-Brain Co-evolution using L-Systems as a Generative Encoding,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2001) pp. 868–875.
66. De Beir, A. and Vanderborght, B., “Evolutionary Method for Robot Morphology: Case Study of Social Robot Probo,” Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (2016) pp. 609–610.
67. Lim, S. H. and Teo, J., “Design, Optimization and Fabrication of a Climbing Six Articulated-Wheeled Robot Using Artificial Evolution and 3D Printing,” BR. J. Math. Comput. Sci. 10 (2), 121 (2015).
68. Clark, A. J., Moore, J. M., Wang, J. and Tan, X., “Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2012) pp. 325–332.
69. Shim, Y. S., Kim, S. J. and Kim, C. H., “Evolving Flying Creatures with Path-Following Behavior,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2004) pp. 125–132.
70. Corucci, F., Calisti, M., Hauser, H. and Laschi, C., “Novelty-Based Evolutionary Design of Morphing Underwater Robots,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2015) pp. 145–152.
71. Hornby, G. S., Generative Representations for Evolutionary Design Automation Ph.D. Thesis (Waltham, Massachusetts, USA: Brandeis University, 2003).
72. Brodbeck, L., Hauser, S. and Iida, F., “Morphological evolution of physical robots through model-free phenotype development,” PLoS ONE 10 (6), e0128444 (2015).
73. Pollack, J. B. and Lipson, H., “The GOLEM Project: Evolving Hardware Bodies and Brains,” Proceedings of the NASA/DoD Workshop on Evolvable Hardware (2000) pp. 37–42.
74. Smith, B. G. R., Saaj, C. M. and Allouis, E., “Evolving Legged Robots Using Biologically Inspired Optimization Strategies,” Proceedings of the IEEE International Conference on Robotics and Biomimetics (2010) pp. 1335–1340.
75. Cliff, D. and Miller, G. F., “Tracking the Red Queen: Measurements of Adaptive Progress in Co-evolutionary Simulations,” In: Advances in Artificial Life, vol. 929(16) (Springer, Berlin-Heidelberg, 1995) pp. 200218.
76. Komosiński, M. and Ulatowski, S., “Framsticks: Towards a Simulation of a Nature-Like World, Creatures and Evolution,” In: Applications of Evolutionary Computation, vol. 1674(33) (Springer, Berlin-Heidelberg, 1999) pp. 261265.
77. Digumarti, K., “Concurrent Optimization of Mechanical Design and Locomotion Control of a Legged Robot,” Proceedings of the Mobile Service Robotics: Proceedings of the 17th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (2014) pp. 315–323.
78. Auerbach, J. E. and Bongard, J. C., “Evolving Complete Robots with CPPN-NEAT: The Utility of Recurrent Connections,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2011) pp. 1475–1482.
79. Endo, K. and Maeno, T., “Simultaneous Design of Morphology of Body, Neural Systems and Adaptability to Environment of Multi-Link-Type Locomotive Robots Using Genetic Programming,” Proceedings of the RSJ/IEEE International Conference on Intelligent Robots and Systems (2001) pp. 2282–2287.
80. Endo, K., Maeno, T. and Kitano, H., “Co-evolution of Morphology and Walking Pattern of Biped Humanoid Robot Using Evolutionary Computation. Consideration of Characteristic of the Servomotors,” Proceedings of the RSJ/IEEE International Conference on Intelligent Robots and Systems (2002) pp. 2678–2683.
81. Rubrecht, S., Singla, E., Padois, V., Bidaud, P. and de Broissia, M., “Evolutionary Design of a Robotic Manipulator for a Highly Constrained Environment,” In: New Horizons in Evolutionary Robotics, vol. 341(8) (Springer, Berlin-Heidelberg, 2011) pp. 109121.
82. Mazzapioda, M., Cangelosi, A. and Nolfi, S., “Evolving Morphology and Control: A Distributed Approach,” Proceedings of the IEEE Congress on Evolutionary Computation (2009) pp. 2217–2224.
83. Heinen, M. R. and Osório, F. S., “Evolving Morphologies and Gaits of Physically Realistic Simulated Robots,” Proceedings of the ACM symposium on Applied Computing (2009) pp. 1161–1165.
84. Farritor, S. and Dubowsky, S., “On modular design of field robotic systems,” Auton. Robot. 10 (1), 5765 (2001).
85. Chocron, O., “Evolutionary design of modular robotic arms,” Robotica 26 (3), 323330 (2007).
86. Chocron, O., “Evolving Modular Robots for Rough Terrain Exploration,” In: Mobile Robots: The Evolutionary Approach, vol. 50(2) (Springer-Verlag, Berlin-Heidelberg, 2007) pp. 2346.
87. Chung, W. K., Han, Jeongheon, Youm, Y. and Kim, S. H., “Task Based Design of Modular Robot Manipulator Using Efficient Genetic Algorithm,” Proceedings of the International Conference on Robotics and Automation (1997) pp. 507–512.
88. Miconi, T. and Channon, A., “A Virtual Creatures Model for Studies in Artificial Evolution,” Proceedings of the IEEE Congress on Evolutionary Computation (2005) pp. 565–572.
89. Pollack, J. B., Hornby, G. S., Lipson, H. and Funes, P., “Computer creativity in the automatic design of robots,” Leonardo 36 (2), 115121 (2003).
90. Endo, K., Maeno, T. and Kitano, H., “Co-Evolution of Morphology and Walking Pattern of Biped Humanoid Robot Using Evolutionary Computation–Evolutionary Designing Method and its Evaluation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003) pp. 340–345.
91. Sims, K., “Evolving 3D morphology and behavior by competition,” Artif. Life 1 (4), 353372 (1994).
92. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6 (2), 182197 (2002).
93. Back, T., Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, New York, NY, USA, 1996).
94. Stanley, K. O. and Miikkulainen, R., “Evolving neural networks through augmenting topologies,” Evol. Comput. 10 (2), 99127 (2002).
95. Hansen, N., “The CMA Evolution Strategy: A Tutorial,” arXiv.org, 1604. arXiv:1604.00772 (2016).
96. Caamaño, P., Tedín, R., Paz-Lopez, A. and Becerra, J. A., “JEAF: A Java Evolutionary Algorithm Framework,” Proceedings of the IEEE Congress on Evolutionary Computation (2010) pp. 1–8.
97. Lassabe, N., Luga, H. and Duthen, Y., “A New Step for Artificial Creatures,” Proceedings of the IEEE Symposium on Artificial Life (2007) pp. 243–250.
98. Parker, G. B. and Nathan, P. J., “Co-Evolution of Sensor Morphology and Control on a Simulated Legged Robot,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2007) pp. 516–521.
99. Jakobi, N., Husbands, P. and Harvey, I., “Noise and the Reality Gap: The use of Simulation in Evolutionary Robotics,” In: Advances in Artificial Life, vol. 929(53), (Springer, Berlin-Heidelberg, 1995) pp. 704720.
100. Nelson, A. L. and Grant, E.Aggregate Selection in Evolutionary Robotics”, In: Mobile Robots: The Evolutionary Approach, vol. 50(4) (Springer-Verlag, Berlin-Heidelberg, 2007) pp. 6388.
101. Lee, W. P., “Evolving robot brains and bodies together: An experimental investigation,” J. Chin. Inst. Eng. 26 (2), 125132 (2003).
102. Moore, J. M. and McKinley, P. K., “Evolving Flexible Joint Morphologies,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2012) pp. 145–152.
103. Cliff, D., Husbands, P. and Harvey, I., “Explorations in evolutionary robotics,” Adapt. Behav. 2 (1), 73110 (1993).
104. Lipson, H. and Pollack, J., “Evolving Physical Creatures,” Proceedings of the International Conference on Artificial Life (2006) pp. 282–287.
105. Faíña, A., Bellas, F., López-Peña, F. and Duro, R. J., “EDHMoR: Evolutionary designer of heterogeneous modular robots,” Eng. Appl. Artif. Intell. 26 (10), 24082423 (2013).

Keywords

A survey on evolutionary-aided design in robotics

  • Shanker G. Radhakrishna Prabhu (a1), Richard C. Seals (a1), Peter J. Kyberd (a1) and Jodie C. Wetherall (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed