Skip to main content Accessibility help

Stiffness analysis of multibody systems using matrix structural analysis—MSA

  • G. D. L. Soares Júnior (a1), J. C. M. Carvalho (a1) and R. S. Gonçalves (a1)


This paper deals with the stiffness analysis of multibody systems using the Matrix Structural Analysis—MSA. This methodology allows us to obtain the stiffness matrix of the structure from the stiffness properties of each element. First the MSA method is described and its application is detailed using an L-structure in order to make easy its understanding. Numerical and experimental results obtained for the L-structure and a 6-RSS parallel manipulator, follow to prove the validity of the methodology.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Dimarogonas, A. D., Machine Design: A CAD Approach (John Wiley and Sons, Inc. N.Y., 2001).
2. Hartenberg, R. S. and Denavit, J., Kinematic Systhesis of Linkages (Mc Graw-Hill, New York, 1964).
3. Chondros, T. G., “Archimedes life works and machines,'' J. Mech. Mach. Theory 45, 17661775 (2010).
4. Merlet, J. P., Parallel Robots, 2nd ed. (Kluwer, Dordrecht, 2005).
5. Macho, E., Altuzarra, O., Pinto, C. and Hernandez, A., “Workspaces associated to assembly modes of the 5R planar parallel manipulator,'' Robotica 26 (3), 395403 (May 2008).
6. Figielski, A., Bonev, I. A. and Bigras, P., “Towards development of a 2-DOF planar parallel robot with optimal workspace use,” 2007 IEEE International Conference on Systems, Man, and Cybernetics, Montréal, QC, Canada, (2007) pp. 7–10.
7. Stewart, D., “A Platform Whit Six Degrees of Freedom,” Proceedings of the Institution of Mechanical Engineers, (1965) Vol. 180, Pt. 1, n. 15, pp. 371386.
8. Ceccarelli, M., “A new 3 dof spatial parallel mechanism,” Mech. Mach. Theory 32 (8), 895902 (1997).
9. Nava Rodriguez, N. E., Carbone, G. and Ceccarelli, M., “CaPaMan2bis as Trunk Module in CALUMA (CAssino Low-Cost hUMAnoid Robot),” Proceedings of the 2nd IEEE International Conference on Robotics, Automation and Mechatronics RAM 2006, Bangkok, (2006) pp. 347–352.
10. Ottaviano, E. and Ceccarelli, M., “An application of a 3-DOF parallel manipulator for earthquake simulations,” IEEE Trans. Mechatronics 11 (2), 240–146 (2006).
11. Martines, E. E. H., Conghui, L., Carbone, G., Ceccarelli, M. and Cajun, C. S. L., “Experimental and numerical characterization of CaPaMan 2bis operation,” J. Appl. Res. Technol. 8 (1), 101119 (2010).
12. Hess-Coelho, T. A., Batalha, G. F., Moraes, D. T. B. and Boczko, M., “A Prototype of a Contour Milling Machine Based on a Parallel Kinematic Mechanism,” Proceedings of the 32nd Int. Symposium on Robotics, Seoul, Korea, (2001).
13. Gosselin, C. M. and Angeles, J., “Singularity analysis of closed loop kinematic chains,” IEEE Trans. Robot. Autom. 6 (3), 281290 (1990).
14. Castelli, G., Ottaviano, E. and Ceccarelli, M., “A fairly general algorithm to evaluate workspace characteristics of serial and parallel manipulators,” Int. J. Mech. Based Design Struct. Mach. 36, 1433 (2008).
15. Gonçalves, R. S., Santos, R. R. and Carvalho, J. C. M., “On The Performance of Strategies for the Path Planning of a 5R Symmetrical Parallel Manipulator,” Proceedings of the DINCON 2008, 7th Brazilian Conference on Dynamics, Control and Applications, Unesp at Presidente Prudente, SP, Brazil, (2008).
16. Tsai, L.W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (John Wiley & Sons, New York, 1999).
17. Rivin, E. I., Stiffness and Damping in Mechanical Design (Marcel Dekker Inc., New York, 1999).
18. Dimarogonas, A. D. and Paipetis, S. A., Analytical Methods in Rotor Dynamics (Appl. Sci. Publishers, London, 1983).
19. Dimarogonas, A. D., Vibration for Engineers, 2nd ed. (Prentice-Hall International Editions, Upper Saddle River, New Jersey, 1996).
20. Chondros, T. G. and Dimarogonas, A. D., “Identification of cracks in welded joints of complex structures,” J. Sound Vib. 69 (4), 531538 (1980).
21. Carbone, G. and Ceccarelli, M., “A comparison of indices for stiffness performance evaluation,” Proceedings of the 12th IFToMM World Congress, Besançon, France (2007) pp. n.A831.
Liu, X.-J., Jin, Z.-L. and Gao, F., “Optimum design of 3-Dof spherical parallel manipulators with respect to the conditioning and stiffness indices,” Mech. Mach. Theory 35 (9), 12571267 (2000).
23. Simaan, N. and Shoham, M., “Stiffness Synthesis of a Variable Geometry Planar Robot,” In: 8th International Symposium on Advances in Robot Kinematics ARK 2002 (Lenarcic, J. and Thomas, F., eds.) (Kluwer Academic Publishers, Caldes de Malavella, 2002) pp. 463472.
24. Carbone, G., Lim, H. O., Takanishi, A. and Ceccarelli, M., “Optimum Design of a New Humanoid Leg by Using Stiffness Analysis,” Proceedings of the 12th International Workshop on Robotics in Alpe-Andria-Danube Region RAAD 2003, Cassino, (2003), paper 045RAAD03.
25. Lim, B. and Park, F., “Minimum vibration mechanism design via convex programming,” J. Mech. Design 131 (1), 110091110099 (2009).
26. Menon, C., Vertechy, R., Markot, M. and Parenti-Castelli, V., “Geometrical optimization of parallel mechanism based in natural frequency evaluation: Application to a spherical mechanism for future space applications,” IEEE Trans. Robot. 25 (1), 1224 (2009).
27. Ceccarelli, M., Fundamentals of Mechanics of Robotic Manipulation (Kluwer, Dordrecht, 2004).
28. Yoon, W. K., Suehiro, T., Tsumaki, Y. and Uchiyama, M., “Stiffness analysis and design of a compact modified delta parallel mechanism,” Robotica 22, 463475 (2004).
29. Deblaise, D., Hernot, X. and Maurine, P., “A Systematic Analytical Method for PKM Stiffness Matrix Calculation,” Proceedings of the IEEE International Conference on Robotics and Automation, (2006).
30. Gonçalves, R. S. and Carvalho, J. C. M., “Stiffness Analysis of Parallel Manipulator Using Matrix Structural Analysis,” Proceedings of the EUCOMES 2008, 2nd European Conference on Mechanism Science, Cassino, Italy, (2008) pp. 255–262.
31. Zhang, D., Xi, F., Mechefske, C. M. and Lang, S. Y. T., “Analysis of parallel kinematic machine with kinetostatic modeling method,” Robot. Comput.-Integr. Manuf. 20 (2), 151165 (2004).
32. Majou, F., Gosselin, C. M., Wenger, P. and Chablat, D., “Parametric Stiffness Analysis of the Orthoglide,” Proceedings of the 35th International Symposium on Robotics, Paris, France, (2004).
33. Bouzgarrou, B. C., Fauroux, J. C., Gogu, G. and Heerah, Y., “Rigidity Analysis of T3R1 Parallel Robot with Uncoupled Kinematics,” Proceedings of the 35th International Symposium on Robotics, Paris, France, (2004).
34. Corradini, C., Fauroux, J. C., Krut, S. and Company, O., “Evaluation of a 4 Degree of Freedom Parallel Manipulator Stiffness,” Proceedings of the 11th World Cong. in Mechanism & Machine Science, IFTOMM'2004, Tianjin, China, (2004).
35. Enferadi, J. and Tootoonchi, A. A., “Accuracy and stiffness analysis of a 3-RRP spherical parallel manipulator,” Robotica 1–17 (2010).
36. Pashkevich, A., Chablat, D. and Wenger, P., “Stiffness analysis of overconstrained parallel manipulators,” Mech. Mach. Theory, 44, 966982 (2009).
37. Li, B., Yu, H., Deng, Z., Yang, X. and Hu, H., “Stiffness modeling of a family of 6-DoF parallel mechanisms with three limbs based on screw theory,” J. Mech. Sci. Technol. 24, 373382 (2010).
38. Pinto, C., Corral, J., Oscar, A. and Hernández, A., “A methodology for static stiffness mapping in lower mobility parallel manipulators with decoupled motions,” Robotica, 28, 719735 (2009).
39. Przemieniecki, J. S., Theory of Matrix Structural Analysis (Dover Publications, Inc., New York, 1985).
40. Dong, W., Du, Z. and Sun, L., “Stiffness Influence Atlases of a Novel Flexure Hinge-Based Parallel Mechanism with Large Workspace,” Proceedings of IEEE ICRA: Int. Conf. On Robotics and Automation, Barcelona, Spain, (2005).
41. Gonçalves, R. S. and Carvalho, J. C. M., “Singularities of Parallel Robots Using Matrix Structural Analysis,” Proceedings of the XIII International Symposium on Dynamic Problems of Mechanics – DINAME, Angra dos Reis, RJ, Brazil, (2009).
42. Gonçalves, R. S., Estudo de Rigidez de Cadeias Cinemáticas Fechadas Thesis, (Uberlândia, Brazil: Universidade Federal de Uberlândia (in Portuguese), 2009. <>
43. Gonçalves, R. S. and Carvalho, J. C. M., “A Multi-Objective Optimization Design for Parallel Structures,” Proceedings of the 20th International Congress of Mechanical Engineering COBEM2009, Gramado, Brazil, (2009).
44. Gonçalves, R. S., Carvalho, J. C. M., Carbone, G. and Ceccarelli, M., “A General Approach for Accuracy Analysis of Parallel Manipulator with Joint Clearance,” Proceedings of the 20th International Congress of Mechanical Engineering COBEM2009, Gramado, Brazil, (2009).
45. Gonçalves, R. S., Carvalho, J. C. M., Carbone, G. and Ceccarelli, M., “Indices for stiffness and singularity evaluation for designing 5R parallel manipulators,” Open Mech. Eng. J. 4, (2010).
46. El-Khasawneh, B. S. and Ferreira, P. M., “Computation of stiffness and stiffness bounds for parallel link manipulator,” Int. J. Mach. Tools Manuf. 39 (2), 321342 (1999).
47. Zhang, D., Kinetostatic Analysis and Optimization of Parallel and Hybrid Architecture for Machines Tolos Ph.D Thesis (Laval University Quebec, Canada, 2000).
48. Ceccarelli, M. and Carbone, G., “Numerical and Experimental Analysis of the Stiffness Performance of Parallel Manipulators,” Proceedings of the 2nd International Colloquium Collaborative Research Centre 562, Braunschweig, (2005) pp. 21–35.
49. Huang, T., Zhao, X. and Whitehouse, D. J., “Stiffness estimation of a tripod-based parallel kinematic machine,” IEEE Trans. Robot. Autom. 18 (1), (2002).
50. Clinton, C. M., Zhang, G. and Wavering, A. L., “Stiffness Modeling of a Stewart-Platform-Based Milling Machine,” Proceedings of the Trans. of the North America Manufacturing Research Institution of SME, Vol. XXV, Lincoln, (1997) pp. 335–340.
51. Logan, D. L., A First Course in the Finite Element Method, 5 ed. (Cengage Learning, Stamford, CT, 2011).
52. Shabana, A. A., Dynamics of Multibody Systems (John Wiley & Sons, New York, 1989).
53. Berthouex, P. M. and Brown, L. C., Statistics for Environmental Engineers (Lewis Publishers, Boca Raton, FL, 2002) p. 463.
54. Bezerra, C. A. D., Modelagem Geométrica da Estrutura Cartesiana Totalmente Paralela (In Portuguese) MSc Thesis (Brazil: Federal University of Uberlândia, 1996).
55. Carvalho, J. C. M., Duarte, M. A. V. and Ribeiro, C. R., “Forward and Inverse Kinematic Model of a Parallel Cartesian Structure Using Neural Network,” Proceedings of the Dynamic Problems of Mechanics (IX DINAME), (pp. 207–211. 2001)
56. Sudhakar, U. and Srinvas, J., “A stiffness index prediction approach for 3-RPR planar parallel linkage,” Int. J. Eng. Res. Tecnol. 2 (9), 27472751 (2013).
57. Guohua, C., Bin, W., Nan, W. and Yanwei, Z., “Stiffness, workspace analysis and optimization for 3UPU parallel robot mechanism,” TELKOMNIKA 11 (9), 52525261 (2013).
58. Aginaga, J., Zabalza, I., Altuzarra, O. and Nájera, J., “Improving static stiffness of the 6-RUS parallel manipulator using inverse singularities,” Robot. Comput.-Integr. Manuf. 28, (2012).
59. Rezaei, A., Akbarzadeh, A. and Akbarzadeh, M., “An investigation on stiffness of a 3-PSP spatial parallel mechanism with flexible moving platform using invariant form,” Mech. Mach. Theory 51, (2012).


Stiffness analysis of multibody systems using matrix structural analysis—MSA

  • G. D. L. Soares Júnior (a1), J. C. M. Carvalho (a1) and R. S. Gonçalves (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed