Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-08T07:28:56.861Z Has data issue: false hasContentIssue false

Self-adaptive learning particle swarm optimization-based path planning of mobile robot using 2D Lidar environment

Published online by Cambridge University Press:  26 January 2024

Julius Fusic S.*
Affiliation:
Department of Mechatronics Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
Sitharthan R.
Affiliation:
School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
*
Corresponding author: Julius Fusic S.; Email: erjuliusfusic@gmail.com

Abstract

The loading and unloading operations of smart logistic application robots depend largely on their perception system. However, there is a paucity of study on the evaluation of Lidar maps and their SLAM algorithms in complex environment navigation system. In the proposed work, the Lidar information is finetuned using binary occupancy grid approach and implemented Improved Self-Adaptive Learning Particle Swarm Optimization (ISALPSO) algorithm for path prediction. The approach makes use of 2D Lidar mapping to determine the most efficient route for a mobile robot in logistical applications. The Hector SLAM method is used in the Robot Operating System (ROS) platform to implement mobile robot real-time location and map building, which is subsequently transformed into a binary occupancy grid. To show the path navigation findings of the proposed methodologies, a navigational model has been created in the MATLAB 2D virtual environment using 2D Lidar mapping point data. The ISALPSO algorithm adapts its parameters inertia weight, acceleration coefficients, learning coefficients, mutation factor, and swarm size, based on the performance of the generated path. In comparison to the other five PSO variants, the ISALPSO algorithm has a considerably shorter path, a quick convergence rate, and requires less time to compute the distance between the locations of transporting and unloading environments, based on the simulation results that was generated and its validation using a 2D Lidar environment. The efficiency and effectiveness of path planning for mobile robots in logistic applications are validated using Quanser hardware interfaced with 2D Lidar and operated in environment 3 using proposed algorithm for production of optimal path.

Type
Research Article
Copyright
© Thiagarajar College of Engineering, 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pande, P. V., Parhi, D. K. and Pratihar, S. K., “Path planning for mobile robots using genetic algorithms,” J. Intell. Robot. Syst. 54(2), 223245 (2009).Google Scholar
Li, A., Cao, J., Li, S., Huang, Z., Wang, J. and Liu, G., “Map construction and path planning method for a mobile robot based on multi-sensor information fusion,” Appl. Sci. 12(6), 2913 (2022).CrossRefGoogle Scholar
Parker, L. E., “A survey of path planning algorithms for mobile robotics,” IEEE Trans. Robot. Autom. 10(5), 505526 (1994).Google Scholar
Elnabarawy, S., Elhafsi, M. and Elhawary, A., “Survey of SLAM algorithms for autonomous mobile robots,” Robotics 9(4), 96 (2020).Google Scholar
Niaz, M. H., Lee, J. H. and Kim, K. J., “A comprehensive review of SLAM algorithms and their applications in mobile robotics,” J. Intell. Robot. Syst. 94(1-2), 126 (2019).Google Scholar
Goudar, S. R. and Deshpande, M. M., “A comparative study of evolutionary algorithms for path planning of mobile robots,” Int. J. Adv. Res. Comput. Eng. Technol. 1(4), 147153 (2012).Google Scholar
Peng, H., Li, Y. and Zhang, X., “Robot path planning using artificial potential field method,” J. Comput. Inf. Syst. 6(7), 23582365 (2010).Google Scholar
Wahab, A., Nadhir, M., Lee, C. M., Akbar, M. F. and Hassan, F. H.. “Path planning for mobile robot navigation in unknown indoor environments using hybrid PSOFS algorithm.” IEEE Access 8, 161805–161815 (2020).Google Scholar
Arifin, A. Z., Matsui, H. and Sugimoto, S., “Path Planning for Mobile Robots Using Ant Colony Optimization and Fuzzy Logic,” In: Proceedings of the 6th International Conference on Intelligent Systems Design and Applications (2006) pp. 433438.Google Scholar
Sathiya, V. and Chinnadurai, M., “Evolutionary algorithms-based multi-objective optimal mobile robot trajectory planning,” Robotica 37(8), 13631382 (2019).CrossRefGoogle Scholar
Sharma, A. and Singh, S. P., “Heuristic-based navigation of mobile robots using hybrid fuzzy logic and artificial potential field,” Robot. Auton. Syst. 125, 103409 (2020).Google Scholar
Hao, J., He, X. and Sun, Y., “A new hybrid heuristic method based on improved artificial potential field algorithm for mobile robot path planning,” IEEE Access 9, 2386323873 (2021).Google Scholar
Wang, J., Zhao, J. and Zeng, J., “An adaptive artificial potential field algorithm for mobile robot path planning,” IEEE Access 8, 156601156612 (2020).Google Scholar
Gao, Y., Xu, Y., Zhang, Q. and Huang, X., “A path planning method for mobile robots based on improved ant colony optimization algorithm,” Math. Probl. Eng. (2020).Google Scholar
Wang, X. and Wu, Z., “A novel path planning method for mobile robots based on A* algorithm and artificial potential field,” J. Ambient Intell. Humaniz. Comput. 12(10), 1141511425 (2021).Google Scholar
Julius Fusic, S. and Sitharthan, R., “Improved RRT* algorithm-based path planning for unmanned aerial vehicle in a 3D metropolitan environment,” Unmanned Syst., 117 (2023). https://www.worldscientific.com/doi/10.1142/S2301385024500225.Google Scholar
Liu, Y. and Zhang, G., “Mobile robot path planning based on an improved potential field algorithm,” Front. Robot. AI 8, 763408 (2021).Google Scholar
Hussain, R., Ahmad, A. and Khan, W. A., “Hybrid bat-inspired algorithm and ant colony optimization-based path planning for mobile robots,” SN Comput. Sci. 2(5), 115 (2021).Google Scholar
Wu, Y., Wu, J. and Wei, H., “Path planning for mobile robot based on improved artificial potential field algorithm,” J. Intell. Fuzzy Syst. 39(4), 60376049 (2020).Google Scholar
Ren, J., Liu, C. and Zhang, Y., “Path planning of mobile robot based on a novel artificial potential field method,” Int. J. Adv. Robot. Syst. 17(1), 1729881420907166 (2020).Google Scholar
Al-Atabany, W., Gao, Y. and Liu, H., “A hybrid heuristic algorithm for mobile robot path planning in dynamic environment,” J. Intell. Fuzzy Syst. 40(1), 10831093 (2021).Google Scholar
Krell, E., Sheta, A., Balasubramanian, A. P. R. and King, S. A., “Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning,” J. Artif. Intell. Soft Comput. Res. 9(4), 267282 (2019).CrossRefGoogle Scholar
Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B. and Tian, Q., “Self-adaptive learning based particle swarm optimization,” Inf. Sci. 181(20), 45154538 (2011).CrossRefGoogle Scholar
Zhou, J. and Duan, B., “A comprehensive review of simultaneous localization and mapping for mobile robots,” IEEE Access 9, 5297052988 (2021).Google Scholar
Liu, Y., Sun, X. and Lu, M., “Chaotic cooperative particle swarm optimization for mobile robot path planning,” Robot. Auton. Syst. 86, 112 (2016).Google Scholar
Hu, Y., Wen, Y. and Zhang, H., “A comprehensive learning particle swarm optimization for path planning of mobile robot,” J. Intell. Robot. Syst. 92(3-4), 517530 (2018).Google Scholar
Jiang, J., Wang, Z. and Zhang, Y., “An improved LSSPSO algorithm for mobile robot path planning,” J. Intell. Fuzzy Syst. 41(1), 551562 (2021).Google Scholar
Liu, Z. and Zhang, X., “Mobile robot path planning based on improved PSO algorithm with local search strategy,” Int. J. Robot. Autom. 34(3), 240247 (2019).Google Scholar
Zhang, W., Zhang, H. and Xiong, Z., “A modified velocity particle swarm optimization algorithm for mobile robot path planning,” Int. J. Adv. Robot. Syst. 16(3), 113 (2019).Google Scholar
Fusic, S. J., Sitharthan, R., Masthan, S. A. R. S. and Hariharan, K., “Autonomous vehicle path planning for smart logistics mobile applications based on modified heuristic algorithm,” Meas. Sci. Technol. 34(3), 034004 (2022).CrossRefGoogle Scholar
Gad, A. G., “Particle swarm optimization algorithm and its applications: a systematic review,” Arch. Comput. Methods Eng. 29(5), 25312561 (2022).CrossRefGoogle Scholar
Zhao, Z. and Liu, L., “An improved CLPSO algorithm for mobile robot path planning,” J. Intell. Fuzzy Syst. 41(1), 595605 (2021).Google Scholar
Srijaroon, N., Sethanan, K., Jamrus, T. and Chien, C.-F., “Green vehicle routing problem with mixed and simultaneous pickup and delivery, time windows and road types using self-adaptive learning particle swarm optimization,” Eng. Appl. Sci. Res. 48(5), 657669 (2021).Google Scholar
Tao, X., Li, X., Chen, W., Liang, T., Li, Y., Guo, J. and Qi, L., “Self-adaptive two roles hybrid learning strategies-based particle swarm optimization,” Inf. Sci. 578, 457481 (2021).CrossRefGoogle Scholar
Zhang, Q., Ning, X., Li, Y., Pan, L., Gao, R. and Zhang, L., “Path planning of patrol robot based on modified grey wolf optimizer,” Robotica 41(7), 19471975 (2023).CrossRefGoogle Scholar
Zhang, X., Lai, J., Xu, D., Li, H. and Fu, M., “2D Lidar-based SLAM and path planning for indoor rescue using mobile robots,” J. Adv. Transport. 2020, Article ID 8867937, 14pp (2020).CrossRefGoogle Scholar
Alkhawaja, F., Jaradat, M. A. and Romdhane, L., “Low-cost depth/IMU intelligent sensor fusion for indoor robot navigation,” Robotica 41(6), 16891717 (2023).CrossRefGoogle Scholar
Fusic, S. J., Kanagaraj, G., Hariharan, K. and Karthikeyan, S., “Optimal path planning of autonomous navigation in outdoor environment via heuristic technique,” Transp. Res. Interdiscip. Perspect. 12, 100473 (2021).Google Scholar
Li, L., Li, L., Li, C. and Li, Y., “A self-learning PSO algorithm for mobile robot path planning,” IEEE Access 9, 1791817929 (2021).Google Scholar