Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T04:46:06.811Z Has data issue: false hasContentIssue false

Objectives, criteria and methods for the design of the SmartHand transradial prosthesis

Published online by Cambridge University Press:  16 December 2009

Christian Cipriani*
Affiliation:
ARTS Lab, Scuola Superiore Sant'Anna, Pontedera 56025, Italy
Marco Controzzi
Affiliation:
ARTS Lab, Scuola Superiore Sant'Anna, Pontedera 56025, Italy
Maria Chiara Carrozza
Affiliation:
ARTS Lab, Scuola Superiore Sant'Anna, Pontedera 56025, Italy
*
*Corresponding author. E-mail: christian@arts.sssup.it

Summary

This paper presents the requirements, design criteria and methodology used to develop the design of a new self-contained prosthetic hand to be used by transradial amputees. The design is based on users' needs, on authors background and knowledge of the state of the art, and feasible fabrication technology with the aim of replicating as much as possible the functionality of the human hand. The paper focuses on the design approach and methodology which is divided into three steps: (i) the mechanical actuation units, design and actuation distribution; (ii) the mechatronic development and finally (iii) the controller architecture design. The design is presented here and compared with significant commercial devices and research prototypes.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dellon, B. and Matsuoka, Y., “Prosthetics, exoskeletons, and rehabilitation,” IEEE Robot. Autom. Mag. 14 (1), 3034 (2007).CrossRefGoogle Scholar
2.Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L. and Cipriani, C., “Design of a cybernetic hand for perception and action,” Biol. Cybern. 95 (6), 629644 (2006).CrossRefGoogle ScholarPubMed
3.Craelius, W., “The bionic man: Restoring mobility,” Science 295, 10181021 (2002).CrossRefGoogle ScholarPubMed
4.Riso, R. R., “Strategies for providing upper extremity amputees with tactile and hand position feedback – Moving closer to the bionic arm,” Technol. Health Care 7, 401409 (1999).CrossRefGoogle Scholar
5.Pons, J. L., Ceres, R. and Pfeiffer, F., “Multifingered dextrous robotics hand design and control: a review,” Robotica 17, 661674, (1999).CrossRefGoogle Scholar
6.Light, C. M. and Chappell, P. H., “Development of a lightweight and adaptable multiple-axis hand prosthesis,” Med. Eng. Phys. 22, 679684 (2000).CrossRefGoogle ScholarPubMed
7.Kyberd, P. J., Holland, O. E., Chappel, P. H., Smith, S., Tregdigo, R., Bagwell, P. J., and Snaith, M., “Marcus: A two degree of freedom hand prosthesis with hierarchical grip control,” IEEE Trans. Rehabil. Eng. 3 (1), 7076 (1995).CrossRefGoogle Scholar
8.Massa, B., Roccella, S., Carrozza, M. C. and Dario, P., “Design and Development of an Underactuated Prosthetic Hand,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington DC (2002) pp. 33743379.Google Scholar
9.Pons, J. L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S. and Van Moorleghem, W., “The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects,” Auton. Robots 16, 143163 (2004).CrossRefGoogle Scholar
10.Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R. and Bretthauer, G., “A hydraulically driven multifunctional prosthetic hand,” Robotica 23, 293299 (2005).CrossRefGoogle Scholar
11.Otto Bock Healthcare, Minneapolis, MN (2009). [Online]. Available http://www.ottobockus.comGoogle Scholar
12.Touch EMAS Ltd, Edinburgh, U.K. (2009) [Online]. Available: http://www.touchbionics.comGoogle Scholar
13.Nightingale, J. M., “Microprocessor control of an artificial arm,” J. Microcomput. Appl. 8, 167173 (1985).CrossRefGoogle Scholar
14.Kyberd, P. J., Mustapha, N., Carnegie, F. and Chappell, P. H., “Clinical experience with a hierarchically controlled myoelectric hand prosthesis with vibro-tactile feedbackProsthet. Orthot. Int. 17 (1), 5664 (1993).CrossRefGoogle ScholarPubMed
15.Pylatiuk, C., Mounier, S., Kargov, A., Schulz, S. and Bretthauer, G., “Progress in the development of a multifunctional hand prosthesis,” Proceedings of IEEE EMBS International Conference, San Francisco, CA, 2, 42624263 (2004).Google Scholar
16.The SMARTHAND Project (The Smart Bio-adaptive Hand Prosthesis, NMP Project # 2006 - 33423).Google Scholar
17.Rodriguez, F. J., Ceballos, D., Schuttler, M., Valero, A., Valderrama, E., Stieglitz, T. and Navarro, X., “Polyimide cuff electrodes for peripheral nerve stimulation,” J. Neurosci. Methods 98, 105118 (2000).CrossRefGoogle ScholarPubMed
18.Micera, S., Navarro, X., Carpaneto, J., Citi, L., Tonet, O., Rossini, P. M., Carrozza, M. C., Hoffmann, K. P., Vivó, M., Yoshida, K. and Dario, P., “On the Use of Longitudinal Intrafascicular Peripheral Interfaces for the Control of Cybernetic Hand Prostheses in Amputees,” IEEE Trans. Neural Syst. Rehabil. Engineering 16 (5), 453472 (2008).CrossRefGoogle ScholarPubMed
19.Kyberd, P., Chappel, R. H. and Gow, D., “Foreword by the guest editors,” Robotica 23, 273274 (2005).CrossRefGoogle Scholar
20.Pylatiuk, C. and Schulz, S., “Using the Internet for an Anonymous Survey of Myoelectrical Prosthesis Wearers,” Proceedings of the Myoelectric Controls Symposium (MEC 2005), Fredericton, New Brunswick, Canada (2005).Google Scholar
21.Sollerman, C. and Ejeskar, A., “Sollerman hand function test. A standardized method and its use in tetraplegic patients,” Scand. J. Plast. Reconstr. Surg. Hand Surg. 29, 167176 (1995).CrossRefGoogle Scholar
22.Hirose, S., “Connected Differential Mechanism and its Applications,” Proceedings of the International Conference on Advanced Robotics, Tokyo, Japan (1985) pp. 319326.Google Scholar
23.Cipriani, C., Zaccone, F., Micera, S. and Carrozza, M. C., “On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User–Prosthesis InteractionIEEE Trans. Robot. 24 (1), 170184 (2008).CrossRefGoogle Scholar
24.Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M. C. and Dario, P., “Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications,” IEEE/ASME Trans. Mechatronics 12 (4), 418429 (2007).CrossRefGoogle Scholar
25.Stellin, G., Cappiello, G., Roccella, S., Becchi, F., Metta, G., Carrozza, M. C., Dario, P. and Sandini, G., “Preliminary Design of an Anthropomorphic Dexterous Hand for a 2-Years-Old Humanoid: Towards Cognition” Proceedings of the 2006 1st IEEE/RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (2006) pp. 290–295.Google Scholar
26.Kapandji, I. A., “The Physiology of the Joints – Volume one Upper limb,” 2nd edition, Churchill Livingstone, Edinburgh and London (1982).Google Scholar
27.Webster, J. G.. Tactile Sensors for Robotics and Medicine (John Wiley & Sons, New York, 1988).Google Scholar
28.Buchholz, B., Armstrong, T. J. and Goldstein, S. A., “Anthropometric data for describing the kinematics of the human hand,” Ergonomics 35 (3), 261273 (1992).CrossRefGoogle ScholarPubMed
29.Ingram, J. N., Körding, K. P., Howard, I. S. and Wolpert, D. M., “The statistics of natural hand movements,” Exp. Brain Res. 188 (2), 223236 (2008).CrossRefGoogle ScholarPubMed
30.Kyberd, P., Light, C., Chappell, P. H., Nightingale, J. M., Whatley, D. and Evans, M., “The design of anthropomorphic prosthetic hands: A study of the Southampton Hand,” Robotica 19, 593600 (2001).CrossRefGoogle Scholar
31.Motion Control, Inc. Salt Lake City, UT (2009). [Online]. Available http://www.utaharm.comGoogle Scholar
32.Lundborg, G. and Rosen, B., “Sensory substitution in prosthetics,” Hand Clin. 17 (3), 481488 (2001).CrossRefGoogle ScholarPubMed
33.Dhillon, G. S. and Horch, K. W., “Direct neural sensory feedback and control of a prosthetic arm,” IEEE TNSRE 13 (4), 468472 (2005).Google ScholarPubMed
34.Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. and Dewald, J. P. A., “Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation,” PNAS 104 (50), 2006120066 (2007).CrossRefGoogle Scholar
35.Ehrsson, H. H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P. and Lundborg, G., “Upper limb amputees can be induced to experience a rubber hand as their own,” Brain 131 (12), 34433452 (2008).CrossRefGoogle Scholar
36.Rosén, B., Ehrsson, H., Antfolk, C., Cipriani, C., Sebelius, F. and Lundborg, G., “Sensory transfer into an advanced hand prosthesis,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery 43 (5), 260266 (2009).CrossRefGoogle Scholar
37.Botvinick, M. and Cohen, J., “Rubber hands ‘feel’ touch that eyes see,” Nature 391, 756 (1998).CrossRefGoogle ScholarPubMed
38.Persichetti, A., Vecchi, F. and Carrozza, M. C., “Optoelectronic-based flexible contact sensor for robot finger application,” Proceedings of the International Conference on Rehabilitation Robotics (2007).CrossRefGoogle Scholar
39.Edin, B. B., Ascari, L., Beccai, L., Roccella, S., Cabibihan, J-J. and Carrozza, M. C., “Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift tasks,” Brain Res. Bull. 75 (6), 785795 (2008).CrossRefGoogle Scholar
40.Heim, W., “Microprocessor technology for powered upper extremity prosthetic control systems,” Robotica 23, 275276 (2005).Google Scholar
41.Micera, S., Carrozza, M. C., Beccai, L., Vecchi, F. and Dario, P., “Hybrid bionic systems for the replacement of hand function,” Proc. IEEE 94 (9), 17521762 (2006).CrossRefGoogle Scholar
42.Pons, J. L., Ceres, R., Rocon, E., Reynaerts, D., Saro, B., Levin, S. and Van Moorleghem, W., “Objectives and technological approach to the development of the multifunctional MANUS upper limb prosthesis,” Robotica 23, 301310 (2005).CrossRefGoogle Scholar
43.Light, C. M., Chappell, P. H., Hudgins, B. and Engelhart, K., “Intelligent multifunction myoelectric control of hand prostheses,” J. Med. Eng. Technol. 26 (4), 139146 (2002).CrossRefGoogle ScholarPubMed
44.Cipriani, C., Controzzi, M., Vecchi, F. and Carrozza, M. C., “Embedded Hardware Architecture Based on Microcontrollers for the Action and Perception of a Transradial Prosthesis,” IEEE RAS/EMBS 2008 International Conference on Biomedical Robotics and Biomechatronics (2008).CrossRefGoogle Scholar