Skip to main content Accessibility help
×
Home

Numerical and experimental characterization of singularities of a six-wire parallel architecture

  • Erika Ottaviano (a1) and Marco Ceccarelli (a1)

Summary

A characterization of singularities for a six-wire parallel architecture is presented as a result of numerical and experimental analyses. Numerical analysis has been developed through geometrical and analytical considerations. The study is based on a classification that has been derived on the basis of the geometry of tetrahedra, and singular configurations have been classified as a function of the tetrahedron volume. Experimental characterization has been carried out by considering the wire parallel architecture Cassino tracking system (CATRASYS). Experimental results are reported to characterize the performance of the CATRASYS chain in different operating conditions as an illustrative practical example.

Copyright

Corresponding author

*Corresponding author. E-mail: ottaviano@unicas.it

References

Hide All
1.Angeles, J., “Is there a characteristic length of a rigid body displacement?,” Proceedings of the 3rd International Workshop on Computational Kinematics CK 2005, Cassino, Italy 2005 Paper 25 (CD Proceedings).
2.Parkin, I. A., “The screws for finite displacement of a rigid body expressed in terms of its symmetry screws,” Proceedings of the 3rd International Workshop on Computational Kinematics CK 2005, Cassino, Italy 2005 Paper 8 (CD Proceedings).
3.Huang, C., Sugimoto, K. and Parkin, I. A., “The correspon dence between finite screw systems and projective spaces,” Proceedings of the 3rd International Workshop on Computational Kinematics CK 2005, Cassino, Italy 2005 Paper 46 (CD Proceedings).
4.Vertechy, R. and Parenti-Castelli, V., “An accurate and fast algorithm for the determination of the rigid body pose by three point position data,” Proceedings of the 3rd International Workshop on Computational Kinematics CK 2005, Cassino, Italy 2005 Paper 32 (CD Proceedings).
5.Gabriele, E., “Numerical and Experimental Determination of Industrial Type Robot Workspace,” Master Thesis (Cassino, Italy: University of Cassino, 1994) (in Italian).
6.Williams II, R. L., Albus, J. S. and Bostelman, R. V., “3D cable based Cartesian metrology system,” J. Robot. Syst. 21 (5), 237257 2004.
7.Merlet, J.-P., Les Robots Paralleles. (Hermes, Paris, 1990).
8.Ceccarelli, M., Fundamentals of Mechanics of Robotic Mani pulation (Kluwer, Dordrecht, The Netherlands, 2004).
9.Ceccarelli, M., Toti, M. E. and Ottaviano, E., “CATRASYS (Cassino tracking system): A new measuring system for workspace evaluation of robots,” Proceedings of the 8th International Workshop on Robotics in Alpe-Adria-Danube Region RAAD'99, Munich, Germany 1999 pp. 1924.
10.Ceccarelli, M., Avila Carrasco, C. and Ottaviano, E., “Error analysis and experimental tests of CATRASYS (Cassino tracking system),” Proceedings of the International Conference on Industrial Electronics, Control and Instrumentation IECON 2000, Nagoya, Japan 2000 Paper SPC11-SP2-4.
11.Ottaviano, E., Ceccarelli, M., Toti, M. and Avila Carrasco, C., “CaTraSys (Cassino tracking system): A wire system for experimental evaluation of robot workspace,” J. Robot. Mechatron. 14 (1), 7887 2002.
12.Ottaviano, E., Ceccarelli, M., Sbardella, F. and Thomas, F., “Experimental determination of kinematic parameters and workspace of human arms,” Proceedings of the 11th International Workshop on Robotics in Alpe-Adria-Danube Region RAAD 2002, Balatonfured, Hungary 2002 pp. 271276.
13.Merlet, J.-P., “Singular configurations of parallel manipulators and Grassmann geometry,” Int. J. Robot. Res. 8 (5), 4556 1989.
14.Hao, F. and McCarthy, J. M., “Conditions for line-based singularities in spatial platform manipulators,” J. Robot. Syst. 15 (1), 4355 1998.
15.Notash, L., “Uncertainty configurations of parallel manipulators,” Mech. Mach. Theory 33 (1/2), 123138 1998.
16.Dandurand, A., “The rigidity of compound spatial grid,” Struct. Topol. 10, 4144 1984.
17.Ma, O. and Angeles, J., “Architecture singularities of parallel manipulators,” Int. J. Robot. Autom. 7 (1), 2329 1992.
18.Thomas, F., Ottaviano, E., Ros, L. and Ceccarelli, M., “Uncertainty model and singularities of 3-2-1 wire-based tracking systems,” In: Advances in Robot Kinematics (Kluwer, Dordrecht, The Netherlands, 2002) pp. 107116.
19.Thomas, F., Ottaviano, E., Ros, L. and Ceccarelli, M., “Perfor mance analysis of a 3-2-1 pose estimation device,” IEEE Trans. Robot. Autom. 21 (3), 288297 Jun. 2005.
20.Cayley, A., “A theorem in the geometry of position,” Cambridge Math. J. 2, 267271 1841.
21.Ebert-Uphoff, I., Lee, J. and Lipkin, H., “Characteristic tetrahedron of wrench singularities for parallel manipulators with three legs,” J. Mech. Eng. Sci. 216 (1), 8193 2002.
22.Downing, D. M., Samuel, A. E. and Hunt, K. H., “Identification of the special configurations of the octahedral manipulator using the pure condition,” Int. J. Robot. Res. 21 (2), 147160 2002.

Keywords

Related content

Powered by UNSILO

Numerical and experimental characterization of singularities of a six-wire parallel architecture

  • Erika Ottaviano (a1) and Marco Ceccarelli (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.