Skip to main content Accessibility help

A new kinematics method based on a dynamic visual window for a surgical robot

  • Lingtao Yu (a1) (a2), Zhengyu Wang (a1), Peng Yu (a1), Tao Wang (a1), Huajian Song (a1) and Zhijiang Du (a2)...


This paper proposes a new effective kinematics method based on the dynamic visual window (DVW) for a surgical robot that is equipped with two instrument arms and one laparoscope arm, to enable doctors to achieve operations with their visual habits under the laparoscopic visual environment. The problem of the consistency principle between the doctor's operations under the visual window's feedback and the master–slave operations of the surgical robot is solved. The kinematics models of the surgical robotic arms are established, and the new kinematics methods based on the DVW of the laparoscope and instrument arms are proposed according to their inverse kinematics with respect to the visual coordinate system. Finally, the proposed kinematics method is verified by simulation experiments based on the theoretical algorithm and the mechanism model; the multiple sets of the simulation data are presented to illustrate the correctness and feasibility of the new method in this research.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Sunga, G. T. and Gill, I. S., “Robotic laparoscopic surgery: A comparison of the da Vinci and Zeus systems,” Urology 58 (6), 893898 (2001).
2.Valero, R., Ko, Y. H., Chauhan, S., Schatloff, O., Sivaraman, A., Coelho, R. F., Ortega, F., Palmer, K. J., Sanchez-Salas, R., Davila, H., Cathelineau, X. and Patel, V. R., “Robotic surgery: History and teaching impact,” Actas Urol. Esp. 35 (9), 540545 (2011).
3.Haidegger, T. and Benyo, Z., “Surgical robotic support for long duration space missions,” Acta Astronaut. 63 (7–10), 9961005 (2008).
4.Monsarrat, N., Collinet, P., Narducci, F., Leblanc, E. and Vinatier, D., “Robotic assistance in gynaecological surgery: State-of-the-art,” Gynécol. Obstét. Fertil. 37 (5), 415424 (2009).
5.Giuseppe, T., Ilaria, P., Francesca, P. and Alfred, C., “Economic evaluation of da Vinci-assisted robotic surgery: A systematic review,” Surg. Endosc. 26 (3), 598606 (2012).
6.Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M. and Hirzinger, G., “The DLR MIRO: a versatile lightweight robot for surgical applications,” Ind. Robot: Int. J. 35 (4), 324336 (2008).
7.Konietschke, R., Hagn, U., Nickl, M., Jörg, S., Tobergte, A., Passig, G., Seibold, U., Le-Tien, L., Kübler, B., Gröger, M., Fröhlich, F., Rink, C., Albu-Schäffer, A., Grebenstein, M., Ortmaier, T. and Hirzinger, G., “The DLR MiroSurge: A Robotic System for Surgery,” In: 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan (May 12–17, 2009) pp. 15891590.
8.Lum, M. J. H., Friedman, D. C. W., Sankaranarayanan, G., King, H., Fodero, K., Hannaford, B., J. Rosen and Sinanan, M. N., “The RAVEN: Design and validation of a telesurgery system,” Int. J. Robot. Res. 28 (9), 11831197 (2009).
9.Jacob, R., Mitchell, L., Mika, S. and Blake, H., “Raven: Developing a Surgical Robot from a Concept to a Transatlantic Teleoperation Experiment,” In: Surgical Robotics: Systems Applications and Visions (Rosen, J., B. Hannaford and Satava, R. M., eds.), (Springer, New York, US, 2011) pp. 159197.
10.Hornyak, T., 2010. Paging Raven II: the open-source surgery robot. CNET [internet]. Available at:
11.van den Bedema, L., Rosiellea, N. and Steinbuch, M., “Design of Slave Robot for Laparoscopic and Thoracoscopic Surgery,” 20th International Conference of Society for Medical Innovation and Technology, Vienna, Austria (August 28–30, 2008).
12.Berkelman, P. and Ma, J., “A compact modular teleoperated robotic system for laparoscopic surgery,” Int. J. Robot. Res. 28 (9), 11981215 (2009).
13.Weede, O., Mönnich, H., Müller, B. and Wörn, H., “An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery,” 2011 IEEE International Conference on Robotics and Automation, Shanghai, China (May 9–13, 2011) pp. 57625768.
14.Staub, C., Lenz, C., Panin, G., Knoll, A. and Bauernschmitt, R., “Contour-Based Surgical Instrument Tracking Supported by Kinematic Prediction,” Proceedings of the 2010 3rd IEEE RAS and EMBS, Tokyo, Japan (September 26–29, 2010) pp. 746752.
15.Tully, S., Kantor, G., Zenati, M. A. and Choset, H., “Shape Estimation for Image-Guided Surgery with a Highly Articulated Snake Robot,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA (September 25–30, 2011) pp. 13531358.
16.Gherman, B., Pislan, D., Vaida, C. and Plitea, N., “Development of inverse dynamic model for a surgical hybrid parallel robot with equivalent lumped masses,” Robot. Comput.-Integr. Manuf. 28 (3), 402415 (2012).
17.Brouwer, O. R., Buckle, T., Bunschoten, A., Kuil, J., Vahrmeijer, A. L., Wendler, T., Valdés-Olmos, R. A., van der Poel, H. G. and Leeuwen, F. W. B. van, “Image navigation as a means to expand the boundaries of fluorescence-guided surgery,” Phys. Med. Biol. 57 (10), 31233136 (2012).


Related content

Powered by UNSILO

A new kinematics method based on a dynamic visual window for a surgical robot

  • Lingtao Yu (a1) (a2), Zhengyu Wang (a1), Peng Yu (a1), Tao Wang (a1), Huajian Song (a1) and Zhijiang Du (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.