Skip to main content Accessibility help

Multi-objective optimal design based kineto-elastostatic performance for the delta parallel mechanism

  • Belkacem Bounab (a1)


This paper addresses the dimensional-synthesis-based kineto-elastostatic performance optimization of the delta parallel mechanism. For the manipulator studied here, the main consideration for the optimization criteria is to find the maximum regular workspace where the robot delta must posses high stiffness and dexterity. The dexterity is a kinetostatic quality measure that is related to joint's stiffness and control accuracy. In this study, we use the Castigliano's energetic theorem for modeling the elastostatic behavior of the delta parallel robot, which can be evaluated by the mechanism's response to external applied wrench under static equilibrium. In the proposed formulation of the design problem, global structure's stiffness and global dexterity are considered together for the simultaneous optimization. Therefore, we formulate the design problem as a multi-objective optimization one and, we use evolutionary genetic algorithms to find all possible trade-offs among multiple cost functions that conflict with each other. The proposed design procedure is developed through the implementation of the delta robot and, numerical results show the effectiveness of the proposed design method to enhancing kineto-elastostatic performance of the studied manipulator's structure.


Corresponding author

*Corresponding author. E-mail:


Hide All
1.Adkins, F. A. and Haug, E. J., “Operational envelope of a spatial stewart platform,” Trans. ASME, J. Mech. Des. 2 (119), 330332 (1997).
2.Bhattacharya, S., Hatwal, H. and Ghosh, A., “On the optimum design of a stewart platform type parallel manipulators,” Robotica 13 (2), 133140 (1995).
3.Chablat, D., Wenger, P., Majou, F. and Merlet, J-P., “An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines,” Int. J. Robot. Res. 23 (6), 615624 (2004).
4.Clavel, R., “Delta, a Fast Robot with Parallel Geometry,” Proceedings of the 18th International Symposium on Industrial Robots, Lausanne (1988) pp. 91–100.
5.Clavel, R., Conception d'un robot parallèle rapide à quatre degrés de liberté. PhD thesis (EPFL, Lausanne, 1991).
6.Courteille, E., Deblaise, D. and Maurine, P., “Design optimization of a delta-like parallel robot through global stiffness performance evaluation,” (Oct. 2009) pp. 5159–5166.
7.Deb, K., Multi-Objective Optimization using Evolutionary Algorithms (John Wiley & Sons, 2001).
8.Gosselin, C., “Stiffness mapping for parallel manipulators,” IEEE Trans. Robot. Autom. 3 (6), 377382 (1990).
9.Gosselin, C. and Angeles, J., “The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator,” ASME J. Mech. Des. 110 (1), 3541 (1988).
10.Gosselin, C. and Angeles, J., “The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator,” ASME J. Mech. Des. 111 (2), 202207 (1989).
11.Gosselin, C. and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulators,” Trans. ASME J. Mech. Des. (113), 220226 (1991).
12.Haugh, E. J., Adkins, F. A., and Luh, C. M., “Operational envelopes for working bodies of mechanisms and manipulators,” Trans. ASME J. Mech. Des. 1 (120), 8491 (1998).
13.Kelaiaia, R., Companya, O. and Zaatri, A., “Multiobjective optimization of parallel kinematic mechanisms by the genetic algorithms,” Robotica 30 (5), 783797 (2012).
14.Lara-Molina, F. A., Rosrio, J. M and Dumur, D., “Multi-objective design of parallel manipulator using global indices,” Open Mech. Eng. J. 4, 3747 (2010).
15.Li, Y. and Xu, Q., “A new approach to the architecture optimization of a general 3-puu translational parallel manipulator,” J. Int. Robot. Syst. 46 (1), 5972 (2006).
16.Liu, X.-J., “Optimal kinematic design of a three translational dofs parallel manipulator,” Robotica 24 (2), 239250 (2006).
17.Liu, X.-J., Wang, J., Oh, K.-K. and Kim, J., “A new approach to the design of a delta robot with a desired workspace,” J. Intell. Robot. Syst. 39 (2), 209225 (2004).
18.Lou, Y., Liu, G. and Li, Z., “Randomized optimal design of parallel manipulators,” IEEE Trans. Autom. Sci. Eng. 5 (2), 223233 (2008).
19.MathWorks. Global Optimization Toolbox, Multiobjective Optimization, UsersGuide (2012).
20.Merlet, J.-P., “Determination of 6d workspaces of gough-type parallel manipulator and comparison between different geometries,” Int. J. Robot. Res. 9 (18), 902916 (1999).
21.Merlet, J. P., Parallel Robots, 2nd edn. (Springer Publishing Company, Incorporated, 2010) pp. 1262.
22.Pisla, D., Ceccarelli, M., Husty, M. and Corves, B., New Trends in Mechanism Science: Analysis and Design (Springer Dordrecht Heidelberg, London, New York, 2010) pp. 633640.
23.Przemieniecki, J. S., Theory of Matrix Structural Analysis (Courier Dover Publications, 1985).
24.Salisbury, J. K. and Craig, J. J., “Articulated hands: force control and kinematic issues,” Int. J. Robot. Res. 1 (1), 417 (1982).
25.Siciliano, B. and Khatib, O., Handbook of Robotics (Springer, 2008) pp. 229319.
26.Stock, M. and Miller, K., “Optimal kinematic design of spatial parallel manipulators: application to linear delta robot,” ASME J. Mech. Des. (125), 292301 (2003).
27.Tsai, L. W., Robot Analysis, the Mechanics of Serial and Parallel Manipulators (John Wiley & Sons, 1999).
28.Wang, L., Amos, H. C. Ng and Deb, K., Multi-objective Evolutionary Optimisation for Product Design and Manufacturing (Springer, 2011).
29.Xu, Q. and Li, Y., “Kinematic analysis and optimization of a new compliant parallel micromanipulator,” Int. J. Adv. Robot. Syst. 3 (4), 5972 (2006).
30.Zanganeh, K. E. and Angeles, J., “Kinematic isotropy and the optimum design of parallel manipulators,” Int. J. Robot. Res. 16 (2), 185197 (1997).
31.Zhang, D., Parallel Robotic Machine Tools (Springer, 2010).
32.Zhao, Y., “Dimensional synthesis of a three translational degrees of freedom parallel robot while considering kinematic anisotropic property,” Robot. Comput.-Integr. Manuf. 29 (1), 169179 (2013).


Multi-objective optimal design based kineto-elastostatic performance for the delta parallel mechanism

  • Belkacem Bounab (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed