Skip to main content Accessibility help
×
Home

Influence of CNT-based Nanocomposites in Dynamic Performance of Redundant Articulated Robot

  • M. Saravana Mohan (a1) and P. S. Samuel Ratna Kumar (a2)

Summary

In this study, AA5083-reinforced multiwalled carbon nanotubes (MWCNT) nanocomposites were selected as the alternate material for a redundant articulated robot (RAR) design by varying the composition of MWCNT wt%. By assigning AA5083-reinforced MWCNT as a custom material to the parts of RAR developed by Solid Works and exported to MATLAB/SimMechanics platform to convert the model into multi-body system blocks. The dynamic parameter torque was observed utilising simulation capability in a SimMechanics second-generation environment. The simulation results inferred that AA5083 reinforced with increased wt% of MWCNT has better properties suitable for RAR design.

Copyright

Corresponding author

*Corresponding author. E-mail: saravana.moha@gmail.com

References

Hide All
1.Kiyoto, I., Hitonobu, K., Katsuyuki, K., Kenji, K., “Observation of wear surface between pure PEEK and counterpart materials; titanium and 7075 aluminum alloy, in robot joint,” App. Mech. Mater. 307, 347351 (2013).
2.Dentler, D. R. II, Design, Control, and Implementation of a Three Link Articulated Robot Arm. Master’s Thesis (Dept. Mechanical. Eng. Akron (OH): The University of Akron, 2008).
3.Dai, G. L., Chang, S. L., Hak, G. L., Hui, Y. H. and Jong, W. K., “Novel applications of composite structures to robots, machine tools and automobiles,” Comp. Struc. 66(1–4), 1739 (2004).
4.Dai, G. L., Kwang, S. J., Ki, S.K. and Yoon, K. K., “Development of the anthropomorphic robot with carbon fiber epoxy composite materials,” Comp. Struc. 25(1–4), 313324 (1993).
5.Li, Q. and Christian, A., “CNT reinforced light metal composites produced by melt stirring and by high pressure die casting,” Comp. Sci. Tech. 70(16), 22422247 (2010).
6.Thostenson, E. T., Li, C. and Chou, T. W., “Nanocomposites in context,” Comp. Sci. Tech. 65(3–4), 491516 (2005).
7.Li, C. and Chou, T. W., “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces,” Comp. Sci. Tech. 63(11), 15171524 (2003).
8.Kashyap, K. T. and Patil, R. G., “On Young’s modulus of multi-walled carbon nanotubes,” Bull. Mater. Sci. 31, 185187 (2008).
9.Esawi, A., Morsi, K. and Sayed, A., “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,” Comp. Sci.Tech. 70(16), 22372241 (2010)
10.Liu, Z. Y., Xu, S. J. and Xiao, B. L., “Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminium matrix composites,” Comp. Part A 43(12), 21612168 (2012).
11.Liao, J. and Tan, M. J., “A simple approach to prepare Al/CNT composite: spread–dispersion (SD) method,” Mater. Let. 65(17–18), 27422744 (2011).
12.Choi, H. J., Shin, J. H. and Bae, D. H., “The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites,” Comp. Part A 43(7), 10611072, (2012).
13.Shin, S. E. and Bae, D. H., “Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites,” Mater. Charac. 83, 170177 (2013).
14.Samuel Ratna Kumar, P. S., Robinson Smart, D.S. and John Alexis, S., “Corrosion behaviour of aluminium metal matrix reinforced with multi-wall carbon nanotube,” J. Asian Ceram. Soc. 5(1), 7175, (2017).
15.Chen, B. and Shen, J., “Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites,” Carbon. 114, 198208 (2017).
16.Siciliano, B. and Khatib, O., Handbook of Robotics (Springer, Berlin, Heidelberg, 2008).
17.Patel, R. and Shadpey, F., Control of Redundant Robot Manipulators (Springer Verlag, Berlin, Heidelberg, 2005).
18.Maciejewski, A. and Klein, C. A., “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. Robot. Res. 4(3), 109119 (1985)
19.Nakamura, Y., Hanafusa, H. and Yoshikawa, T., “Task-priority based redundancy control of robot manipulators,” Int. J. Robot. Res. 6(2), 315 (1987).
20.Klein, C. A. and Blaho, B. E., “Dexterity measures for the design and control of kinematically redundant manipulators,” Int. J. Robot. Res. 6(2), 7284 (1987).
21.Seraji, H., “Improved configuration control for redundant robots,” J. Robot. Syst. 7(6), 897928 (1990).
22.Maciejewski, A., “Kinetic limitations on the use of redundancy in robotic manipulators,” IEEE Trans. Robot. Autom. 7(2), 205211 (1991).
23.Potkonjak, V., “New approach to the application of redundant robots,” Robot. Comput. Integ. Manuf. 8(3), 181185 (1991).
24.Chen, C. L. and Lin, C. J., “Motion planning of redundant robots,” J. Robot. Syst. 14(12), 839850 (1997).
25.Vosniakos, G. C. and Kannas, Z., “Motion coordination for industrial robotic systems with redundant degrees of freedom,” Robot. Comput. Integ. Manuf. 25(2), 417431 (2009).
26.Michel, O., “Cyberbotics Ltd – WebotsTM: Professional mobile robot simulation,” Int. J. Adv. Robot. Syst. 1(1), 3942 (2004).
27.Zlajpah, L., “Simulation in robotics,” Math. Comput. Simulat. 79(4), 879897 (2008).
28.Sika, Z., Valasek, M., Bauma, V. and Ampola, T. V., “Design of redundant parallel robots by multidisciplinary virtual modeling,” In: Virtual Nonlinear Multibody Systems (Schiehlen, W. and Valasek, M., eds.) (Kluwer Academic Publishers, Dordrecht, 2003) pp. 233241.
29.Ionescu, F., “Modelling and simulation in mechatronics,” IFAC Proc. 40(18), 301312 (2007).
30.Hobarth, W., Gattringer, H. and Bremer, H., “A dynamic model for a hybrid articulated robot,” Proc. Appl. Math. Mech. 8(1) 1012310124 (2008).
31.Fleischera, J. and Kraußeb, M., “Physically consistent parameter optimization for the generation of pose independent simulation models using the example of a 6-axis articulated robot,” Procedia CIRP 12, 217221 (2013).
32.Almaged, M., “Forward and inverse kinematic analysis and validation of the ABB IRB 140 industrial robot,” Int. J. Electron. Mech. Mechatron. Eng. 7(2), 13831401 (2017).
33.Wood, G. D. and Kennedy, D. C., Simulating Mechanical Systems in Simulink with SimMechanics (The MathWorks, Natick 2003). Available from: Math works [06 January 2016].
34.Shaoqiang, Y., Zhong, L. and Xingshan, L., “Modeling and Simulation of Robot Based on Matlab/SimMechanics.” Proceedings of the 27th Chinese Control Conference, Yunnan, China, (2008) pp. 161165.
35.Wen, L. Z., Liang, Z. G., Ping, Z. W. and Bin, J., “A simulation platform design of humanoid robot based on SimMechanics and VRML,” Procedia Eng. 15, 215219 (2011).
36.Fajar, M., Douglas, S. S. and Gomm, J. B., “Modelling and simulation of spherical inverted pendulum based on LQR control with SimMechanics,” Appl. Mech. Mater. 391, 163167 (2013).
37.Kutuk, M. E., Halicioglu, R. and Dulger, L. C., “Kinematics and simulation of a hybrid mechanism: MATLAB/SimMechanics,” J. Phys. Conf. Ser. 574, 451458 (2015).
38.Zi, B., Cao, J. and Zhu, Z., “Dynamic simulation of hybrid-driven planar five bar parallel mechanism based on SimMechanics and tracking control,” Int. J. Adv. Robot. Syst. 8(4), 2833 (2011).
39.Liu, J., Gong, Y., Chen, G. and Chen, H., “Modeling and Simulation of Loader Working Device Based on SimMechanics,” International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China (2011) pp. 20542059.
40.Yu, L., Zhang, L., Zhang, N. and Yang, S., “Kinematics, simulation and analysis of 3-RPS parallel robot on SimMechanics,” Proc. IEEE Int. Conf. Inf. Autom. (2010) pp. 23632367.
41.Li, Y., Wang, X., Xu, P., Zheng, D., Liu, W., Wang, Y. and Qiao, H., “SolidWorks/SimMechanics Based Lower Extremity Exoskeleton Modeling Procedure for Rehabilitation,” World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings (2013) pp. 20582061.
42.Yang, C., He, J., Han, J. and Liu, X., “Real-time state estimation for spatial six-degree-of-freedom linearly actuated parallel robots,” Mechatronics 19(6), 10261033 (2009).
43.Hanchen, L., Xinhua, Z. and Haoliang, X., “Modelling and simulation of 3RRRT parallel manipulator based on MALTAB with SimMechanics,” Proc. Int. Forum Inf. Technol. App. (2009) pp. 290293.
44.Gouasmi, M.,Ouali, M., Fernini, B. and Meghatria, M., “Kinematic modelling and simulation of a 2-R robot using SolidWorks and verification by MATLAB/Simulink,” Int. J. Adv. Robot. Syst. 9(6), 245 (2012).
45.Saravanamohan, M. and Anbumalar, V., “Modelling and simulation of multi spindle drilling redundant SCARA robot using SolidWorks and MATLAB/SimMechanics,” RevistaFacultad de Ingeniería, 8(1), 6372 (2016).
46.Gao, J., Wang, Y. and Chen, Z., “Modelling and simulation of inverse kinematics for planar 3-RRR parallel robot based on SimMechanics,” Adv. Mat. Res. 898, 510513 (2014).
47.Gang, L. S., Wang, D. H., Cheng, W. S. and Nan, Z. Y., “Path planning and system simulation for an industrial spot welding robot based on SimMechanics,” Key Eng. Mat. 419-420, 665668 (2010).
48.Udai, A. D., Rajeevlochana, C. G. and Saha, S.K., “Dynamic Simulation of a KUKA KR5 Industrial Robot Using MATLAB SimMechanics,” 15th National Conference on Machines and Mechanisms (NaCoMM) 2011, Chennai, India (2011) pp. 18.
49.Mineo, C., Pierce, S. G., Nicholson, P. I. and Cooper, I., “Robotic path planning for non-destructive testing – a custom MATLAB toolbox approach,” Robot. Comput. Integr. Manuf. 37, 112 (2016)
50.Juan, W., He, S. Z., Xiang, Z. Z. and Rong, M. E., “Analysis and simulation of 6R robot in virtual reality,” IFAC Papers OnLine 49(16), 426430 (2016).
51.Adeyeri, M. K., Ayodeji, S. P. and Olasanoye, O., “Modelling and simulation of 4 DOF robotic arm for an automated Roselle tea processing plant using Solidwoks and Matlab Simulik,” IFAC PapersOnLine, 50(2), 249250 (2017).
52.Aburaia, M., Markl, E. and Stuja, K., “New concept for design and control of 4 axis robot using the additive manufacturing technology,” Procedia Eng. 100, 13641369 (2015).

Keywords

Influence of CNT-based Nanocomposites in Dynamic Performance of Redundant Articulated Robot

  • M. Saravana Mohan (a1) and P. S. Samuel Ratna Kumar (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.