Skip to main content Accessibility help
×
Home

Hybrid Methodology for Path Planning and Computational Vision Applied to Autonomous Mission: A New Approach

  • Fabrício O. Coelho (a1), Milena F. Pinto (a1), João Pedro C. Souza (a2) and André L. M. Marcato (a1)

Summary

In recent years, mobile robots have become increasingly frequent in daily life applications, such as cleaning, surveillance, support for the elderly and people with disabilities, as well as hazardous activities. However, a big challenge arises when the robotic system must perform a fully autonomous mission. The main problems of autonomous missions include path planning, localisation, and mapping. Thus, this research proposes a hybrid methodology for mobile robots on an autonomous mission involving an offline approach that uses the Direct-DRRT* algorithm and the artificial potential fields algorithm as the online planner. The experimental design covers three scenarios with an increasing degree of accuracy in respect of the real world. Additionally, an extensive evaluation of the proposed methodology is reported.

Copyright

Corresponding author

* Corresponding author. E-mail: fabricio.coelho2010@engenharia.ufjf.br

References

Hide All
1. Lattanzi, D. and Miller, G., “Review of robotic infrastructure inspection systems,” J. Infrastruct. Syst., 04017004 (2017).
2. Panchpor, A. A., Shue, S. and Conrad, J. M., “A Survey of Methods for Mobile Robot Localization and Mapping in Dynamic Indoor Environments,” 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES), Vijayawada, India (2018) pp. 138144.
3. Nosrati, M., Karimi, R. and Hasanvand, H. A., “Investigation of the*(star) search algorithms: Characteristics, methods and approaches,World Appl. Program . 2(4), 251256 (2012).
4. Tao, S. and Yang, Y., “Collision-free motion planning of a virtual arm based on the fabrik algorithm,Robotica 35(6), 14311450 (2017).
5. Khan, F., Alakberi, A., Almaamari, S. and Beig, A. R., “Navigation Algorithm for Autonomous Mobile Robots in Indoor Environments,” Advances in Science and Engineering Technology International Conferences (ASET), Dubai (2018) pp. 16.
6. Coelho, F. O., Carvalho, J. P., Pinto, M. F. and Marcato, A. L., “Direct-DRRT*: A RRT Improvement Proposal,” 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO), Ponta Delgada, Azores (2018) pp. 154158.
7. LaValle, S. M., “Rapidly-exploring random trees: A new tool for path planning,” http://msl.cs.illinois.edu/∼lavalle/papers/Lav98c.pdf (1998). Accessed 1st August 2017.
8. Tomasello, P., Sidhu, S., Shen, A., Moskewicz, M.W., Redmon, N., Joshi, G., Phadte, R., Jain, P. and Iandola, F., “Dscnet: Replicating lidar point clouds with deep sensor cloning,” arXiv preprint arXiv:1811.07070 (2018).
9. Coelho, F. O., Carvalho, J. P., Pinto, M. F. and Marcato, A. L., “Ekf and Computer Vision for Mobile Robot Localization,” 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO), Ponta Delgada, Azores (2018) pp. 148153.
10. Shiller, Z., “Off-line and On-line Trajectory Planning,” In: Motion and Operation Planning of Robotic Systems (Carbone, G., Gomez-Bravo, F. (eds)) (Springer, Cham, 2015) pp. 2962.
11. Connell, D. and La, H. M., “Dynamic path planning and replanning for mobile robots using RRT,” arXiv preprint arXiv:1704.04585 (2017).
12. Connell, D. and Manh La, H., “Extended rapidly exploring random tree–based dynamic path planning and replanning for mobile robots,Int. J. Adv. Robot. Syst. 15(3), 1729881418773874 (2018).
13. Du, Z. and Liu, S., “Asymptotical RRT-Based Path Planning for Mobile Robots in Dynamic Environments ” 2018 37th Chinese Control Conference (CCC), Wuhan, China (2018) pp. 52815286.
14. Breuer, T., Macedo, G. R. G., Hartanto, R., Hochgeschwender, N., Holz, D., Hegger, F., Jin, Z., Müller, C., Paulus, J., Reckhaus, M. and Ruiz, J. A. A., “Johnny: An autonomous service robot for domestic environments,J. Intell. Robot. Syst. 66(1–2), 245272 (2012).
15. Wisspeintner, T., Nowak, W. and Bredenfeld, A., “Volksbot–a Flexible Component-Based Mobile Robot System,” In: Robot Soccer World Cup (Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds)) (Springer, Berlin, Heidelberg, 2005) pp. 716723.
16. Qureshi, A. H., Iqbal, K. F., Qamar, S. M., Islam, F., Ayaz, Y. and Muhammad, N., “Potential Guided Directional-RRT* for Accelerated Motion Planning in Cluttered Environments,” 2013 IEEE International Conference on Mechatronics and Automation, Karlsruhe, Germany (2013) pp. 519524.
17. Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots,Int. J. Robot. Res. 5(1), 9098 (1986).
18. Xu, X., Yang, Y. and Pan, S., “Motion Planning for Mobile Robots,” In: Advanced Path Planning for Mobile Entities (IntechOpen, 2018).
19. Feirstein, D. S., Koryakovskiy, I., Kober, J. and Vallery, H., “Reinforcement learning of potential fields to achieve limit-cycle walking,IFAC-PapersOnLine 49(14), 113118 (2016).
20. Faria, M. P., Mendonça, T., Olivi, L. and Marcato, A., “A modified approach of potential field method for control of trajectory tracking and obstacle avoidance,” IEEE/IAS International Conference on Industry Applications (INDUSCON), Juiz de Fora, Brazil (2014).
21. Cui, P.,Yan, W. and Guo, X., “Path Planning for Underwater Docking Based on Modified Artificial Potential Field,” International Conference on Advanced Robotics and Mechatronics (ICARM), Osaka, Japan (2016) pp. 376381.
22. Leite, D., Figueiredo, K. and Vellasco, M., “Localização por kalman estendido aplicado a mapas baseados em marcos,” In: Simpósio Brasileiro de Automação Inteligente, vol. 12 (2015).
23. Marin-Plaza, P., Hussein, A., Martin, D. and Escalera, A. D. l., “Global and local path planning study in a ros-based research platform for autonomous vehicles,” J. Adv. Trans. 2018, 110 (2018).
24. Dayoub, F., Morris, T., Upcroft, B. and Corke, P., “Vision-Only Autonomous Navigation Using Topometric Maps,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan (2013) pp. 19231929.
25. Fung, M. L., Chen, M. Z. and Chen, Y. H., “Sensor Fusion: A Review of Methods and Applications,” 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing (2017) pp. 38533860.
26. La, H. M., Lim, R. S., Basily, B. B., Gucunski, N., Yi, J., Maher, A., Romero, F. A. and Parvardeh, H., “Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation,IEEE/ASME Trans. Mech . 18(6), 16551664 (2013).
27. La, H. M., Gucunski, N., Dana, K. and Kee, S.-H., “Development of an autonomous bridge deck inspection robotic system,J. Field Robot. 34(8), 14891504 (2017).
28. Sobreira, H., Moreira, A. P., Costa, P. and Lima, J., “Robust mobile robot localization based on a security laser: an industry case study,Indus. Robot Int. J. 43(6), 596606 (2016).
29. Corke, P., Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol. 73 (Springer, Berlin, 2011).
30. Okuyama, I. F., Maximo, M. R. O. A., Cavalcanti, A. L. O. and Afonso, R. J. M., “Nonlinear Grey-Box Identification of a Differential Drive Mobile Robot. XIII Simpósio Brasileiro de Automação Inteligente (SBAI),” Brazil (2017).
31. Thrun, S., Burgard, W. and Fox, D., Probabilistic robotics (intelligent robotics and autonomous agents) (MIT Press, Cambridge, MA, USA, 2005).
32. Carvalho, J. P., Jucá, M., Menezes, A., Marcato, A., Bessa, A. D. S. and Olivi, L., “Landing a UAV in a dynamical target using fuzzy control and computer vision,” CBA2016 (2016) pp. 26362641.
33. Cashbaugh, J. and Kitts, C., “Automatic calculation of a transformation matrix between two frames,” IEEE Access (2018).
34. Rudy, N., Robot Localization and Kalman Filters on Finnding Your Position in a Noisy World Ph.D. Dissertation (Utrecht University, 2003).
35. Pinto, M. F., Mendonça, T. R., Olivi, L. R., Costa, E. B. and Marcato, A. L., “Modified Approach Using Variable Charges to Solve Inherent Limitations of Potential Fields Method,” 2014 11th IEEE/IAS International Conference on Industry Applications (INDUSCON), Juiz de Fora, Brazil (2014), pp. 16.
36. Woods, A. C. and La, H. M., “A novel potential field controller for use on aerial robots,IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(4), 665676 (2017).
37. Sharma, S., Sutton, R., Hatton, D. and Singh, Y., “Path planning of an autonomous surface vehicle based on artificial potential fields in a real time marine environment,” COMPIT’17: 16th International Conference on Computer and IT Applications in the Maritime Industries, Cardiff, UK (2017).
38. Lima, P.U., Ahmad, A., Dias, A.,Conceição, A.G., Moreira, A. P., Silva, E., Almeida, L., Oliveira, L. and Nascimento, T. P., “Formation control driven by cooperative object tracking,Robot. Auto. Sys. 63(1), 6879 (2015).
39. Robots, A. M., “Pionner 3-dx datasheet,” http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DXP3DX-RevA.sflb.ashx (2011). Accessed in 09 August 2017.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed