1.“Spinal Cord Injury Facts and Figures at a Glance 2018,” National SCI Statistical Center, Birmingham, AL (2018).
2.
Forslund, E. B., Roaldsen, K. S., Hultling, C., Wahman, K. and Franzén, E., “Concerns about falling in wheelchair users with spinal cord injury-validation of the swedish version of the spinal cord injury falls concern scale,” Spinal Cord 54(2), 115–119 (2016).
3.
Forslund, E. B., Jørgensen, V., Franzén, E., Opheim, A., Seiger, Å., Ståhle, A., Hultling, C., Stanghelle, J. K., Roaldsen, K. S. and Wahman, K., “High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: A prospective study of risk indicators,” J. Rehabil. Med. 49(2), 144–151 (2017).
4.
Sezer, N., “S. Akku¸s and F. G. U˘gurlu, “Chronic complications of spinal cord injury,” World J. Orthop
. 6(1), 24 (2015).
5.
Ogura, T., Itami, T., Yano, K., Mori, I. and Kameda, K., “An Assistance Device to Help People with Trunk Impairment Maintain Posture,” In: Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK (2017) pp. 358–363.
6.
Mahmood, M. N., Peeters, L. H. C., Paalman, M., Verkerke, G. J., Kingma, I. and van Dieën, J. H., “development and evaluation of a passive trunk support system for duchenne muscular dystrophy patients,” J. Neuroeng. Rehabil. 15, 22 (2018).
7.
Murray, R. C., Ophaswongse, C. and Agrawal, S. K., “Design of a Wheelchair Robot for Active Postural Support,” In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA (2018) pp. V05AT07A059.
8.
Nguyen, C. C., Antrazi, S. C., Zhou, Z. L. and Campbell, C. E., “Analysis and implementation of a 6 DOF stewart platform-based robotic wrist,” Comput. Electr. Eng. 17(3), 191–203 (1991).
9.
Tsai, L. W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (John Wiley & Sons, Inc., New York, NY, 1999).
10.
Gan, D., Dai, J. S., Dias, J., Umer, R. and Seneviratne, L., “Singularity-free workspace aimed optimal design of a 2T2R parallel mechanism for automated fiber placement,” J. Mech. Robot. 7(4), 41022–41029 (2015).
11.
Wu, G., Van der Helm, F. C., Veeger, H. D.,Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A. R., McQuade, K., Wang, X. and Werner, F. W., “ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand,” J. Biomech. 38(5), 981–992 (2005).
12.
McGill, M. S., “Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics,” J. Orthop. Res. 9(1), 91–103 (2005).
13.
Danneels, L., Coorevits, P., Cools, A., Vanderstraeten, G., Cambier, D., Witvrouw, E. and De Cuyper, H., “Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain,” Eur. Spine J. 11(1), 13–19 (2002).
14.
O’Sullivan, K., McCarthy, R., White, A., O’Sullivan, L. and Dankaerts, W., “Lumbar posture and trunk muscle activation during a typing task when sitting on a novel dynamic ergonomic chair,” Ergonomics 55(120),1586–1595 (2012).
15.
Redfern, M. S., Hughes, R. E. and Chaffin, D. B., “High-pass filtering to remove electrocardiographic Interference from torso EMG recordings,” Clin. Biomech. 8(1), 44–48 (1993).
16.
Konrad, P., The ABC of EMG: A Practical Introduction to Kinesiological Electromyography ver 1.4, (Noraxon U.S.A. Inc., 2006) pp. 1–61.
17.
Panjabi, M., Abumi, K., Duranceau, J. and Oxland, T., “Spinal stability and intersegmental muscle forces. A Biomechanical model,” Spine (Phila Pa 1976) 14(2), 194–200 (1989).
18.
Kinoshita, H., “Pathology of hyperextension injuries of the cervical spine,” Spinal Cord 32(6), 367 (1994).
19.
Sun, P. S., Mai, J., Zhou, Z., Agrawal, S. K. and Wang, Q., “Upper-Body Motion Mode Recognition Based on IMUs for a Dynamic Spine Brace,” In: Proceedings of the IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China (2018) pp. 167–170.