Skip to main content Accessibility help
×
Home

A Hierarchical Safety Control Strategy for Exoskeleton Robot Based on Maximum Correntropy Kalman Filter and Bounding Box

  • Yang Mo (a1) (a2) (a3), Zhenzi Song (a1) (a2) (a3), Hui Li (a1) (a2) (a3) and Zhihong Jiang (a2) (a3)

Summary

Exoskeleton robots have been widely used in many fields at present. When wearing the exoskeleton to operate, the wearer may be unconscious of the position of exoskeleton or affected by the surrounding environment, causing collision between two arms of exoskeleton or between arms and environment. The collision may result in the exoskeleton destroyed or even the wearer injured. This paper proposes a hierarchical safety control strategy for exoskeleton robots based on maximum correntropy Kalman filter and bounding box to ensure safe operation. Accurate joint angle prediction can be obtained by filtering out non-Gaussian impulsive noise using maximum correntropy criterion as evaluation criterion. Relative position relationship of the arms can be derived based on bounding box to realize hierarchical safe control. Enough experiments have been carried out, and the results validated the feasibility of the proposed method.

Copyright

Corresponding author

*Corresponding author. E-mails: lihui2011@bit.edu.cn, jiangzhihong@bit.edu.cn

References

Hide All
1.Lo, H. S. and Xie, S. Q., “Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects,Med. Eng. Phys. 34(3), 261268 (2012).10.1016/j.medengphy.2011.10.004
2.Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G. and Collins, S. H., “Human-in-the-loop optimization of exoskeleton assistance during walking,Science 356(6344), 12801284 (2017).10.1126/science.aal5054
3.Lee, H. D., Lee, B. K., Kim, W. S., Han, J. S., Shin, K. S. and Han, C. S., “Human-robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification,Mechatronics 24(2), 168176 (2014).10.1016/j.mechatronics.2014.01.007
4.Jarrasse, N. and Morel, G., “Connecting a human limb to an exoskeleton,IEEE Trans. Robot. 28(3), 697709 (2012).10.1109/TRO.2011.2178151
5.Stegall, P., Winfree, K., Zanotto, D. and Agrawal, S. K., “Rehabilitation exoskeleton design: Exploring the effect of the anterior lunge degree of freedom,IEEE Trans. Robot. 29(4), 838846 (2013).10.1109/TRO.2013.2256309
6.Rahman, M. H., Rahman, M. J., Cristobal, O. L., Saad, M., Kenné, J.-P. and Archambault, P.S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,Robotica 33(11), 1939 (2015).10.1017/S0263574714000034
7.Haddadin, S., De Luca, A. and Albu-Schäffer, A., “Robot collisions: A survey on detection, isolation, and identification,IEEE Trans. Robot. 33(6), 12921312 (2017).10.1109/TRO.2017.2723903
8.Vatcha, R. and Xiao, J., “Detection of robustly collision-free trajectories in unpredictable environments in real-time,Auto. Robot. 37(1), 8196 (2014).10.1007/s10514-013-9377-5
9.Xing, D., Liu, F., Liu, S. and Xu, D., “Motion control for cylindrical objects in microscopes view using a projection method I: Collision detection and detach control,IEEE Trans. Ind. Electron. 64(7), 55245533 (2017).10.1109/TIE.2017.2677363
10.Chawda, V. and Niemeyer, G., “Toward Torque Control of a KUKA LBR IIWA for Physical Human-Robot Interaction,Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada (2017) pp. 63876392.
11.Song, Q., Song, L. Z., Kang, F. J., Xie, P. and Xian, , “Research and application of bounding box collision detection technique,Comput. Eng. Appl. 45(24), 238240 (2009).
12.Chang, J. W., Wang, W. and Kim, M. S., “Efficient collision detection using a dual OBB-sphere bounding volume hierarchy,Comput. Aided Des. 42(1), 5057 (2010).10.1016/j.cad.2009.04.010
13.Walizer, L. E. and Peters, J. F., “A bounding box search algorithm for DEM simulation,Comput. Phys. Commun. 182(2), 281288 (2011).10.1016/j.cpc.2010.09.008
14.Kalman, R. E., “A new approach to linear filtering and prediction problems,J. Basic Eng. Trans. 82, 3545 (1960).10.1115/1.3662552
15.Haghighipanah, M., Miyasaka, M., Li, Y. and Hannaford, B., “Unscented Kalman Filter and 3D Vision to Improve Cable Driven Surgical Robot Joint Angle Estimation,Proceedings of IEEE International Conference on Robotics and Automation, Stockholm, Sweden (2016) pp. 41354142.
16.Wang, Y., Chen, W. and Tomizuka, M., “Extended Kalman filtering for robot joint angle estimation using MEMS inertial sensors,IFAC Proc. Vol. 46(5), 406413 (2013).10.3182/20130410-3-CN-2034.00021
17.Lightcap, C. A. and Banks, S. A., “An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator,IEEE Trans. Control Syst. Technol. 18(1), 91103 (2010).10.1109/TCST.2009.2014959
18.Rigatos, G. G., “Sensor fusion-based dynamic positioning of ships using Extended Kalman and Particle Filtering,Robotica 31(3), 389403 (2013).10.1017/S0263574712000409
19.Rigatos, G. G., “Control and disturbances compensation in underactuated robotic systems using the derivative-free nonlinear Kalman filter,Robotica 35(3), 687711 (2017).10.1017/S0263574715000776
20.Chen, B., Liu, X., Zhao, H. and Principe, J. C., “Maximum correntropy Kalman filter,Automatica 76, 7077 (2017).10.1016/j.automatica.2016.10.004
21.Jiang, Z., Zhou, W., Li, H., Mo, Y., Ni, W. and Huang, Q., “A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm,IEEE Trans. Ind. Electron. 65(4), 33373345 (2018).10.1109/TIE.2017.2748058
22.Li, X. R. and Jilkov, V. P., “Survey of maneuvering target tracking. Part I. Dynamic models,IEEE Trans. Aerospace Electron. Syst. 39(4), 13331364 (2004).
23.Luo, J., Su, Y., Ruan, L., Zhao, Y., Kim, D., Sentis, L. and Fu, C., “Robust bipedal locomotion based on a hierarchical control structure,Robotica 1, 118 (2019).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed