Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T08:41:42.363Z Has data issue: false hasContentIssue false

Heavy-duty hexapod robot sideline tipping judgment and recovery

Published online by Cambridge University Press:  15 March 2024

Lianzhao Zhang
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
Fusheng Zha
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
Wei Guo
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
Chen Chen
Affiliation:
Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China Key Laboratory of Intelligent Technology for Cutting and Manufacturing Ministry of Education, Harbin University of Science and Technology, Harbin, China
Lining Sun*
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
Pengfei Wang*
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
*
Corresponding authors: Lining Sun; Email: lnsun@hit.edu.cn, Pengfei Wang; Email: wangpengfei@hit.edu.cn
Corresponding authors: Lining Sun; Email: lnsun@hit.edu.cn, Pengfei Wang; Email: wangpengfei@hit.edu.cn

Abstract

Heavy-duty hexapod robots are well-suited for physical transportation, disaster relief, and resource exploration. The immense locomotion capabilities conferred by the six appendages of these systems enable traversal over unstructured and challenging terrain. However, tipping can be a serious concern when moving with a tripod gait in these challenging environments, which may cause irreversible consequences such as compromised movement control and potential damage. In this paper, we focus on heavy-duty hexapod robot sideline tipping judgment and recovery during tripod gait motion, and a novel sideline tipping judgment and recovery method is proposed by adjusting an optimal swinging leg to the stance state. Considering the locomotion environments, motion mode, and tipping analysis, the robot’s stability margin is quantified, and the tipping event is evaluated by the Force Angle Stability Measure (FASM). The recovery method is initiated upon detecting that the robot is tipping, which involves the selection of an adjustment leg and the determination of an optimal foothold. Since the FASM is based on the foot force and robot center of gravity (CoG), the stability margin quantification expression is reformulated to the constraint form of quadratic programming (QP). Furthermore, a foot force distribution method, integrating stability margin considerations into the QP model, has been devised to ensure post-adjustment stability of the landing leg. Experiments on tipping judgment and recovery demonstrate the effectiveness of the proposed approaches on tipping judgment and recovery.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ding, X. and Yang, F., “Study on hexapod robot manipulation using legs,” Robotica 34(2), 468481 (2016).CrossRefGoogle Scholar
Yi, H., Xu, Z., Xin, X., Zhou, L. and Luo, X., “Bio-inspired leg design for a heavy-duty hexapod robot,” J. Bionic. Eng. 19(4), 975990 (2022).CrossRefGoogle Scholar
Agheli, M., Qu, L. and Nestinger, S. S., “SHeRo: Scalable hexapod robot for maintenance, repair, and operations,” Robot. Comput. Interg. Manuf. 30(5), 478488 (2014).CrossRefGoogle Scholar
Xu, P., Ding, L., Li, Z., Yang, H., Wang, Z., Gao, H., Zhou, R., Su, Y., Deng, Z. and Huang, Y., “Learning physical characteristics like animals for legged robots,” Natl. Sci. Rev. 10(5), nwad045(2023).CrossRefGoogle ScholarPubMed
Yang, D. and Liu, Y., “Motion Planning for Hexapod Robot Based on Fitted Curve,” 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE) (IEEE, 2017) pp. 205210.CrossRefGoogle Scholar
Zhuang, H., Gao, H., Deng, Z., Ding, L. and Liu, Z., “A review of heavy-duty legged robots,” Sci. China Technol. Sci. 57(2), 298314 (2014).CrossRefGoogle Scholar
Song, S. and Waldron, K. J.. Machines that walk: the adaptive suspension vehicle (MIT Press, United States, 1989).Google Scholar
McGhee, R. B. and Iswandhi, G. I., “Adaptive locomotion of a multilegged robot over rough terrain,” IEEE Trans. Syst. Man Cybernet. B 9(4), 176182 (1979).CrossRefGoogle Scholar
Liu, Y. and Xu, Y., “Free Gait Planning of Hexapod Robot Based on Improved DQN Algorithm,” IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT) (IEEE, 2020) pp. 488491.CrossRefGoogle Scholar
Song, S., “Gaits and geometry of a walking chair for the disabled,” J. Terramech. 26(3-4), 211233 (1989).Google Scholar
Zhang, C. D. and Song, S. M., “Stability analysis of wave-crab gaits of a quadruped,” J. Robot. Syst. 7(2), 243276 (1990).CrossRefGoogle Scholar
Messuri, D. A.. “Optimization of the Locomotion of a Legged Vehicle with Respect to Maneuverability (Robot, Walking, Hexapod, Stability),”PhD thesis (The Ohio State University, Columbus, 1985).Google Scholar
Hirose, S., Tsukagoshi, H. and Yoneda, K., “Normalized Energy Stability Margin and Its Contour of Walking Vehicles on Rough Terrain,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2001) pp. 181186.Google Scholar
Chai, H., Li, Y., Song, R., Zhang, G., Zhang, Q., Liu, S., Hou, J., Xin, Y., Yuan, M. and Zhang, G., “A survey of the development of quadruped robots: Joint configuration, dynamic locomotion control method and mobile manipulation approach,” Biomim. Intelli. Robot. 2(1), 100029 (2022).CrossRefGoogle Scholar
Shi, Y., Wang, P., Li, M., Wang, X., Jiang, Z. and Li, Z., “Model Predictive Control for Motion Planning of Quadrupedal Locomotion,” IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM) (IEEE, 2019) pp. 8792.CrossRefGoogle Scholar
Mokhtari, M., Taghizadeh, M. and Mazare, M., “Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton,” Robotica 39(2), 181199 (2021).CrossRefGoogle Scholar
Papadopoulos, E. G. and Rey, D. A., “A New Measure of Tipover Stability Margin for Mobile Manipulators,” Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1996), pp. 31113116.Google Scholar
Ali, S., Moosavian, A. and Alipour, K., “Stability Evaluation of Mobile Robotic Systems Using Moment-Height Measure,” IEEE Conference on Robotics, Automation and Mechatronics (IEEE, 2006), pp. 16.CrossRefGoogle Scholar
Ding, X., Liu, Y., Hou, J. and Ma, Q., “Online dynamic tip-over avoidance for a wheeled mobile manipulator with an improved tip-over moment stability criterion,” IEEE Access 7, 6763267645 (2019).CrossRefGoogle Scholar
Wieber, P., Tedrake, R. and Kuindersma, S., “Modeling and Control of Legged Robots,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, O., eds.) (Springer International Publishing, Berlin, DE, 2016) pp. 12031234.CrossRefGoogle Scholar
Lin, B. S. and Song, S. M., “Dynamic modeling, stability, and energy efficiency of a quadrupedal walking machine,” J. Robot. Syst. 18(11), 657670 (2001).CrossRefGoogle Scholar
Yoneda, K. and Hirose, S., “Tumble Stability Criterion of Integrated Locomotion and Manipulation,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 1996) pp. 870876.Google Scholar
Agheli, M. and Nestinger, S. S., “Foot force based reactive stability of multi-legged robots to external perturbations,” J. Intell. Robot. Syst. 81(3-4), 287300 (2016).CrossRefGoogle Scholar
Agheli, M. and Nestinger, S. S., “Force-based stability margin for multi-legged robots,” Robot. Auton. Syst. 83, 138149 (2016).CrossRefGoogle Scholar
Ghasempoor, A. and Sepehri, N., “A Measure of Machine Stability for Moving Base Manipulators,” Proceedings of 1995 IEEE International Conference on Robotics and Automation (IEEE 1995) (IEEE, 1995) pp. 22492254.Google Scholar
Garcia, E. and de Santos, P. G., “An improved energy stability margin for walking machines subject to dynamic effects,” Robotica 23(1), 1320 (2005).CrossRefGoogle Scholar
Irawan, A. and Nonami, K., “Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain,” J. Field Robot. 28(5), 690713 (2011).CrossRefGoogle Scholar
Garcia, E., Estremera, J. and De Santos, P. G., “A comparative study of stability margins for walking machines,” Robotica 20(6), 595606 (2002).CrossRefGoogle Scholar
Xu, P., Ding, L., Wang, Z., Gao, H., Zhou, R., Gong, Z. and Liu, G., “Contact sequence planning for hexapod robots in sparse foothold environment based on Monte-Carlo tree,” IEEE Robot. Autom. Lett. 7(2), 826833 (2021).CrossRefGoogle Scholar
Peng, W. Z., Song, H. and Kim, J. H., “Reduced-order Model with Foot Tipping Allowance for Legged Balancing,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers (American Society of Mechanical Engineers, 2021) pp. V08BT08A011.CrossRefGoogle Scholar
Shi, Y., He, X., Zou, W., Yu, B., Yuan, L., Li, M., Pan, G. and Ba, K., “Multi-objective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots,” Machines 10(3), 170 (2022).CrossRefGoogle Scholar
Peng, S., Ding, X., Yang, F. and Xu, K., “Motion planning and implementation for the self-recovery of an overturned multi-legged robot,” Robotica 35(5), 11071120 (2017).CrossRefGoogle Scholar
Tian, H., Fang, Z., Zhou, Y., Li, S. and Kou, F. R., “Analysis and control for tumble stability of wheel-legged robots,” Robot 31(2), 159165 (2009).Google Scholar
Xufan, J.. “Research on Compliant Control of Heavy Duty Hexapod Robot Based on Impedance Control,” Master thesis  (Harbin Institute of Technology, Harbin, 2016).Google Scholar
Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M. A. and Siegwart, R., “Control of Dynamic Gaits for a Quadrupedal Robot,” IEEE International Conference on Robotics and Automation (IEEE, 2013) pp. 32873292.CrossRefGoogle Scholar
Focchi, M., Prete, A. D., Havoutis, I., Featherstone, R., Caldwell, D. G. and Semini, C., “High-slope terrain locomotion for torque-controlled quadruped robots,” Auton. Robot. 41(1), 259272 (2017).CrossRefGoogle Scholar
Guanyu, W., Liang, D., Haibo, G., Yiqun, L., Yufei, L., Zhen, L. and Zhongquan, D., “Decomposed QP CFDA for hexapod robots to enhance the slope-climbing ability and experimental validation,” J. Mech. Eng. Sci. 21(55), 1120 (2020).Google Scholar
Yanhao, L., Dong, A., Ying, X., Meng, S., Zhenpeng, L. and Defang, Z., “Kinematics analysis of space docking device of 6-UPS Stewart parallel mechanism,” Mach. Tool Hydraul. 48(23), 150154 (2020).Google Scholar
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material
Download Zhang et al. supplementary material(File)
File 5.1 MB