Skip to main content Accessibility help
×
Home

Explicit Path Tracking by Autonomous Vehicles

  • Dong Hun Shin (a1), Sanjiv Singh (a1) and Ju Jang Lee (a1)

Summary

We have suggested a novel approach to autonomously navigate a full sized autonomous vehicle that separately treats vehicle control and obstacle detection. In this paper we discuss the vehicle control that has enabled our autonomous vehicle to travel at speeds upto 20mph. We point out the limitations of existing schemes that restrict their consideration to kinematic models and show that it is possible to obtain an increase in performance through the use of approximate dynamical models that capture first–order effects. Our approach combines such a modeling philosophy with accurate feedback in world coordinates from sensors that have only recently become available. Experimental results of our implementation on NavLab, a modified van at CMU, are presented.

Copyright

References

Hide All
1.Moravec, H.P., “Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover” Ph.D. Dissertation (Department of Computer Science, Stanford University, Stanford, CA, 1980).
2.Goto, Y. and Stentz, A., “The CMU System for Mobile Robot NavigationIEEE International Conference on Robotics and Automation (1987) pp. 99106.
3.Singh, S. and Keller, P., “Obstacle Detection for High Speed Autonomous NavigationProceedings of IEEE Conference on Robotics and Automation,Sacramento (04, 1991) pp. 27982805.
4.Feng, D., Singh, S. and Krogh, B.H., “Implementation of Dynamic Obstacle Avoidance on the CMU NavLabProc. IEEE Conference on Systems Engineering,Pittsburgh (08, 1990) pp. 208211.
5.Wallace, R., Stentz, A., Moravec, M., Whittaker, W., Thorpe, C. and Kanade, T., “First Results in Road Following” Proceedings of IJCAI, Los Angeles (Ausist, 1985) pp. 10891095.
6.Shin, D.H. and Singh, S., “Position Based Path Tracking for Wheeled Mobile RobotsProceedings IEEE/RSJ International Workshop on Intelligent Robots and Systems '89 (1989) pp. 386391.
7.Kanayama, Y., Nilipour, A. and Lelm, C.A., “A Locomotion Control Method for Autonomous VehiclesIEEE Intl. Conference on Robotics and Automation,Philadelphia (1988) pp. 13151317.
8.Nelson, W.L. and Cox, I.J., “Local Path Control for an Autonomous VehicleIEEE Intl. Conference on Robotics and Automation,Philadelphia (1988) pp. 15041510.
9.Muir, P.F., “Modeling and Control of Wheeled Mobile RobotsPh.D. Thesis (Carnegie–Mellon University, Pittsburgh, Pennsylvania, 1988).
10.Dugoff, H., Fancher, P.S. and Segel, L., “An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance” SAE paper 700377 (1970).
11.Dixon, J.C., “Linear and Non-linear Steady Vehicle HandlingProc. Instn. Mech. Engrs. 202, No. D3, 173186 (1988).
12.Dowling, K., Guzikowski, R., Ladd, J., Pangels, H., Singh, S. and Whittaker, W., “NAVLAB: An Autonomous Navigation Testbed” Technical Report Carnegie Mellon University, CMU–Rl–TR–87–24 (1987).
13.Nelson, W.L., “Continuous Steering Function Control of Robot CartIEEE Transactions on Industrial Electronics 36, No. 3, 330337 (08, 1989).
14.Sheridan, T.B., “Three Models of Preview ControlIEEE Transactions on Human Factors in Electronics HFE–7, No. 2, 91102 (06, 1966).
15.Donges, E., “A Two–level Model of Driver Steering BehaviorHuman Factors 20(6), 691707 (1978).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed