Skip to main content Accessibility help

Energy-optimal relative timing of stance-leg push-off and swing-leg retraction in walking

  • S. Javad Hasaneini (a1) (a2) (a3), John E. A. Bertram (a3) and Chris J. B. Macnab (a2)


Swing-leg retraction in walking is the slowing or reversal of the forward rotation of the swing leg at the end of the swing phase prior to ground contact. For retraction, a hip torque is often applied to the swing leg at about the same time as stance-leg push-off. Due to mechanical coupling, the push-off force affects leg swing, and hip torque affects the stance-leg extension. This coupling makes the energetic costs of retraction and push-off depend on their relative timing. Here, we find the energy-optimal relative timing of these actions. We first use a simplified walking model with non-regenerative actuators, a work-based energetic-cost, and impulsive actuations. Depending on whether the late-swing hip torque is retracting or extending (pushing the leg forward), we find that the optimum is obtained by applying the impulsive hip torque either following or prior to the impulsive push-off force, respectively. These trends extend to other bipedal models and to aperiodic gaits, and are independent of step lengths and walking speeds. In one simulation, the cost of a walking step is increased by 17.6% if retraction torque comes before push-off. To consider non-impulsive actuation and the cost of force production, we add a force-squared (F 2) term to the work cost. We show that this cost promotes simultaneous push-off force and retracting torque, but does not change the result that any extending torque should come prior to push-off. A high-fidelity optimization of the Cornell Ranger robot is consistent with the swing-retraction trends from the models above.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Inman, V. T., Ralston, H. J. and Todd, F., Human Walking (Williams & Wilkins, Baltimore, 1981).
2. Poggensee, K. L., Sharbafi, M. A. and Seyfarth, A., “Characterizing Swing-Leg Retraction in Human Locomotion,” Proceedings of 17th International Conference on Climbing and Walking Robots, Poznan, Poland (Jul. 2014).
3. Muybridge, E., Animal Locomotion (University of Pennsylvania, Philadelphia, P.A., 1887).
4. Rose, J. and Gamble, J. G., Human Walking, 2nd ed. (Williams & Wilkins, Baltimore, 1994).
5. Hasaneini, S. J., Energy Efficient Bipedal Locomotion Ph.D. dissertation (University of Calgary, Calgary, Alberta, Canada, Jan. 2014).
6. Wisse, M., Atkeson, C. G. and Kloimwieder, D. K., “Swing Leg Retraction Helps Biped Walking Stability,” Proceedings 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan (Dec. 2005) pp. 295–300.
7. Seyfarth, A., Geyer, H. and Herr, H., “Swing-leg retraction: A simple control model for stable running,” J. Exp. Biol. 206, 25472555 (2003).
8. Hobbelen, D. G. E. and Wisse, M., “Swing-leg retraction for limit cycle walkers improves disturbance rejection,” IEEE Trans. Robot. 24 (2), 377389 (2008).
9. Karssen, J. G. D., Haberland, M., Wisse, M. and Kim, S., “The optimal swing-leg retraction rate for running,” Proceedings 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (May 2011) pp. 4000–4006.
10. Hasaneini, S. J., Macnab, C. J., Bertram, J. E. and Ruina, A., “Seven Reasons to Brake Leg swing Just Before Heel Strike,” Online Proceedings of Dynamic Walking Conference (Pittsburgh, P.A., 2013).
11. Bhounsule, P. A., Cortell, J., Grewal, A., Hendriksen, B., Karssen, J. D., Paul, C. and Ruina, A., “Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge,” Int. J. Robot. Res. 33 (10), 13051321 (2014).
12. Ruina, A., Bertram, J. E. A. and Srinivasan, M., “A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition,” J. Theor. Biol. 237 (2), 170192 (Nov. 2005).
13. Kuo, A. D., “Energetics of actively powered locomotion using the simplest walking model,” J. Biomed. Eng. 124, 113120 (2002).
14. Bertram, J. E. A. and Hasaneini, S. J., “Neglected losses and key costs: tracking the energetics of walking and running,” J. Exp. Biol. 216 (6), 933938 (Mar. 2013).
15. Hasaneini, S. J., Macnab, C. J., Bertram, J. E. and Leung, H., “Swing-Leg Retraction Efficiency in Bipedal Walking,” Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, IEEE (Chicago: IL, 2014) pp. 2515–2522.
16. McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 9 (2), 6282 (1990).
17. Hasaneini, S. J., Macnab, C. J., Bertram, J. E. and Leung, H., “Optimal Relative Timing of Stance Push-Off and swing leg retraction,” Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE (Tokyo: Japan, 2013) pp. 3616–3623.
18. Srinivasan, M. and Ruina, A., “Computer optimization of a minimal biped model discovers walking and running,” Nature Mag. 439 (7072), 7275 (Jan. 2006).
19. Hasaneini, S. J., Macnab, C. J. B., Bertram, J. E. A. and Leug, H., “The dynamic optimization approach to locomotion dynamics: human-like gaits from a minimally-constrained biped model,” J. Adv. Robot. 27 (11), 845859 (Jul. 2013).
20. Srinivasan, M., “Fifteen observations on the structure of energy-minimizing gaits in many simple biped models,” J. R. Soc. Interface 8 (54), 7498 (2011).
21. Rebula, J. R. and Kuo, A. D., “The cost of leg forces in bipedal locomotion: A simple optimization study,” PloS one 10 (2), e0117384, (2015).
22. Donelan, J. M., Kram, R. and Kuo, A. D., “Simultaneous positive and negative external mechanical work in human walking,” J. biomech. 35 (1), 117124 (2002).
23. Donelan, J. M., Kram, R. and Kuo, A. D., “Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking,” J. Exp. Biol. 205 (23), 37173727 (2002).
24. Mochon, S. and McMahon, T. A., “Ballistic walking: An improved model,” Math. Biosci. 52 (1), 241260 (1980).
25. Basmajian, J., “The human bicycle,” Biomechanics VA, 5, pp. 297302 (1976).
26. McMahon, T. A., Muscles, Reflexes, and Locomotion (Princeton University Press, Princeton, NJ, 1984).
27. Kuo, A. D., Donelan, J. M. and Ruina, A., “Energetic consequences of walking like an inverted pendulum: step-to-step transitions,” Exercise Sport Sci. Rev. 33 (2), 8897 (2005).
28. Margaria, R., Biomechanics and Energetics of Muscular Exercise (Clarendon Press, UK, 1976).
29. Kuo, A. D., “A mechanical analysis of force distribution between redundant, multiple degree-of-freedom actuators in the human: Implications for the central nervous system,” Human Mov. Sci. 13 (5), 635663 (1994).
30. Bhounsolue, P. A., A controller design framework for bipedal robots: Trajectory optimization and event-based stabilization Ph.D. dissertation (Cornell University, Ithaca, NY, USA, May 2012).
31. Patterson, M. A. and Rao, A. V., “Gpops-ii: A matlab software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming,” ACM Trans. Math. Softw. (TOMS) 41 (1), 1 (2014).
32. Gill, P. E. and Murray, W., “Snopt: An sqp algorithm for large-scale constrained optimization,” SIAM J. Opt. 12 (4), 9791006 (2002).
33. Winter, D. A., Biomechanics and Motor Control of Human Movement (John Wiley & Sons Inc., Hoboken, N.J., 2005).
34. Bertram, J. E. A. and Ruina, A., “Multiple walking speed-frequency relations are predicted by constrained optimization,” J. Theor. Biol. 209, 445453 (2001).
35. Bertram, J. E. A., “Constrained optimization in human walking: cost minimization and gait plasticity,” J. Exp. Biol. 208, 979991 (2005).
36. Spong, M. W., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control (John Wiley & Sons Inc., New York, 2006).
37. Formal'skii, A. M., “Ballistic walking design via impulsive control,” J. Aerospace Eng. 23 (2), 129138 (Apr. 2010).


Energy-optimal relative timing of stance-leg push-off and swing-leg retraction in walking

  • S. Javad Hasaneini (a1) (a2) (a3), John E. A. Bertram (a3) and Chris J. B. Macnab (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed