Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T02:38:38.035Z Has data issue: false hasContentIssue false

Energy consumption analysis for an adaptive prototype of 3R industrial robot

Published online by Cambridge University Press:  10 June 2022

Erick-Alejandro González-Barbosa
Affiliation:
Tecnológico Nacional de México/ITS de Irapuato, Irapuato, Mexico
Max Antonio González-Palacios
Affiliation:
Universidad de Guanajuato, División de Ingenierías Campus Irapuato-Salamanca, Salamanca, Mexico
Luz Antonio Aguilera-Cortés
Affiliation:
Universidad de Guanajuato, División de Ingenierías Campus Irapuato-Salamanca, Salamanca, Mexico
José-Joel González-Barbosa*
Affiliation:
Instituto Politécnico Nacional. CICATA, unidad Querétaro, Ciudad de Mexico, Mexico
Juan Pablo Serrano-Rubio
Affiliation:
Tecnológico Nacional de México/ITS de Irapuato, Irapuato, Mexico
José Ángel Colin Robles
Affiliation:
Tecnológico Nacional de México/ITS de Irapuato, Irapuato, Mexico
*
*Corresponding author. E-mail: jgonzalezba@ipn.mx

Abstract

This article presents a methodology to reduce the energy consumption of an industrial robot. We propose a design for a 3R serial manipulator of general geometry. We show an analytical model aiming to analyze the search space of architectures based on the torsion angles of the robot to determine the optimal architecture that allows the efficient use of energy. The analytical model provides a theoretical estimation of the energy consumption and is validated by monitoring the experimental robot. The numerical calculations obtained with a particular case reduced the energy consumption by approximately 7.5%.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gadaleta, M., Pellicciari, M. and Berselli, G., “Optimization of the energy consumption of industrial robots for automatic code generation,” Robot. Comput. Integr. Manuf. 57(3), 452464 (2019).CrossRefGoogle Scholar
Liu, Z., “Chapter 1 - Global Energy Development: The Reality and Challenges,” In: Global Energy Interconnection Liu, ed.), (Z. (Academic Press, Boston, 2015) pp. 164.Google Scholar
Kellens, K., Dewulf, W. and Duflou, J. R., et al., “The co2pe!-Initiative (Cooperative Effort on Process Emissions in Manufacturing): International Framwork for Sustainable Production,” In: Knowledge Collaboration & Learning for Sustainable Innovation: 14th European Roundtable on Sustainable Consumption and Production (ERSCP) conference and the 6th Environmental Management for Sustainable Universities (EMSU) Conference, October 25-29, 2010, Delft, The Netherlands: Delft University of Technology; The Hague University of Applied Sciences; TNO (2010).Google Scholar
Gleeson, D., Björkenstam, S., Bohlin, R., Carlson, J. S. and Lennartson, B., “Towards energy optimization using trajectory smoothing and automatic code generation for robotic assembly,” Proc. CIRP 44(2), 341346 (2016). 6th CIRP Conference on Assembly Technologies and Systems (CATS).CrossRefGoogle Scholar
Pellicciari, M., Berselli, G., Leali, F. and Vergnano, A., “A method for reducing the energy consumption of pick-and-place industrial robots,” Mechatronics 23(3), 326334 (2013).CrossRefGoogle Scholar
Bi, Z. M. and Wang, L., “Optimization of machining processes from the perspective of energy consumption: A case study,” J. Manuf. Syst. 31(4), 420428 (2012).CrossRefGoogle Scholar
Kim, J., “Three dimensional distributed rendezvous in spherical underwater robots considering power consumption,” Ocean Eng. 199(12), 107050 (2020).CrossRefGoogle Scholar
Luo, X., Li, S., Liu, S. and Liu, G., “An optimal trajectory planning method for path tracking of industrial robots,” Robotica 37(3), 502520 (2019).CrossRefGoogle Scholar
Machino, Y. and Mizuuchi, I., “Analysis of Time Optimization for A Robot Arm with Series Elastic Joints,” In: International Conference on Control, Automation and Robotics (IEEE, 2017) pp. 99102.CrossRefGoogle Scholar
Mulik, P. B., “Optimal Trajectory Planning of Industrial Robot with Evolutionary Algorithm,” In: International Conference on Computation of Power, Energy, Information and Communication (2015) pp. 02560263.Google Scholar
Xie, L., Stol, K. and Xu, W., “Energy-optimal motion trajectory of an omni-directional mecanum-wheeled robot via polynomial functions,” Robotica 38(8), 14001414 (2020).CrossRefGoogle Scholar
Ceccarelli, M. and Lanni, C., “A multi-objective optimum design of general 3r manipulators for prescribed workspace limits,” Mech. Mach. Theory 39(2), 119132 (2004).CrossRefGoogle Scholar
Tsai, Y. C. and Soni, A. H., “The effect of link parameter on the working space of general 3r robot arms,” Mech. Mach. Theory 19(1), 916 (1984).CrossRefGoogle Scholar
Nelson, C. A., Laribi, M. A. and Zeghloul, S., “Multi-robot system optimization based on redundant serial spherical mechanism for robotic minimally invasive surgery,” Robotica 37(7), 12021213 (2019).CrossRefGoogle Scholar
Brossog, M., Kohl, J., Merhof, J., Spreng, S., Jörg, F. et al., “Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system,” Proc. CIRP 23(2), 131136 (2014).Google Scholar
Snyman, J. A. and Van Tonder, F., “Optimum design of a three-dimensional serial robot manipulator,” Struct. Optim. 17(2-3), 172185 (1999).CrossRefGoogle Scholar
Olvander, J., Feng, X. and Holmgren, B., “Optimal Kinematics Design of An Industrial Robot Family,” In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2008) pp. 777787.CrossRefGoogle Scholar
Cheng, G. and Hu, J.-G., “Robust proximate time-optimal servomechanism with speed constraint for rapid motion control,” Robot Comput.-Integr. Manuf. 30(4), 379388 (2014).CrossRefGoogle Scholar
Torres, S. and Méndez, J. A., “Seguimiento de trayectorias en robots manipuladores: Revisión de soluciones y nuevas propuestas,” Revista Iberoamericana de Automática e Informática Industrial RIAI 6(4), 8092 (2009).CrossRefGoogle Scholar
Sánchez-Alonso, R. E., González-Barbosa, J.-J., Castañeda, E. C. and García Murillo, M. A., “Análisis cinemático de un novedoso robot paralelo reconfigurable,” Revista Iberoamericana de Automática e Informática Industrial 13(2), 247257 (2016).CrossRefGoogle Scholar
Song, S., She, Y., Wang, J. and Su, H.-J., “Toward tradeoff between impact force reduction and maximum safe speed: Dynamic parameter optimization of variable stiffness robots,” J. Mech. Robot. 12(5), 05 (2020).CrossRefGoogle Scholar
Rubio, F., Llopis-Albert, C., Valero, F. and Suñer, J. L., “Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory,” Robot. Auton. Syst. 86(1), 106112 (2016).CrossRefGoogle Scholar
Carabin, G., Wehrle, E. and Vidoni, R., “A review on energy-saving optimization methods for robotic and automatic systems,” Robotics 6(4), 39 (2017).CrossRefGoogle Scholar
Ystgaard, Pål, Gjerstad, T. B., Lien, T. K. and Nyen, P. A., “Mapping Energy Consumption for Industrial Robots,” In: Leveraging Technology for A Sustainable World (Springer, 2012) pp. 251256.CrossRefGoogle Scholar
Ingarao, G., Vanhove, H., Kellens, K., Behera, A., Fabrizio, M. and Duflou, J., “Energy Consumption Analysis of Robot Based Spif,” In: 11th Global Conference on Sustainable Manufacturing GCSM (January 2013).Google Scholar
Othman, A., Belda, K. and Burget, P., “Physical Modelling of Energy Consumption of Industrial Articulated Robots,” In: International Conference on Control, Automation and Systems (2015) pp. 784789.Google Scholar
Liu, A., Liu, H., Yao, B., Xu, W. and Yang, M., “Energy consumption modeling of industrial robot based on simulated power data and parameter identification,” Adv. Mech. Eng. 10(5), 1687814018773852 (2018).Google Scholar
Eskandary, P. K., Belzile, B. and Angeles, J., “Trajectory-planning and normalized-variable control for parallel pick-and-place robots,” J. Mech. Robot. 11(3), 031001 (2019).CrossRefGoogle Scholar
Barenji, A. V., Liu, X., Guo, H. and Li, Z., “A digital twin-driven approach towards smart manufacturing: Reduced energy consumption for a robotic cellular,” Int. J. Comp. Integ. Manufact. 34(7–8), 116 (2020).Google Scholar
Nguyen, M. T. and Boveiri, H. R., “Energy-efficient sensing in robotic networks,” Measurement 158, 107708 (2020).CrossRefGoogle Scholar
Riazi, S., Wigström, O., Bengtsson, K. and Lennartson, B., “Energy and peak power optimization of time-bounded robot trajectories,” IEEE Trans. Autom. Sci. Eng. 14(2), 646657 (2017).CrossRefGoogle Scholar
Mohammed, A., Schmidt, B. and Wang, L., “Energy-Efficient robot configuration for assembly,” J. Manufact. Sci. Eng. 139(5), 11 (2016).Google Scholar
Bukata, L., Scha, P., Hanzálek, Z. and Burget, P., “Energy optimization of robotic cells,” IEEE Trans. Ind. Inform. 13(1), 92102 (2016).CrossRefGoogle Scholar
Nurmi, J. and Mattila, J., “Global energy-optimised redundancy resolution in hydraulic manipulators using dynamic programming,” Automat. Constr. 73(4), 120134 (2017).CrossRefGoogle Scholar
Plooij, M. and Wisse, M., “A Novel Spring Mechanism to Reduce Energy Consumption of Robotic Arms,” In: International Conference on Intelligent Robots and Systems (2012) pp. 29012908.Google Scholar
Shiakolas, P. S., Conrad, K. L. and Yih, T. C., “On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots,” Int. J. Modell. Simul. 22(4), 245254 (2002).CrossRefGoogle Scholar
Ibrahim, C. D. C. M. Y. and Tiehu, A. K., “Effect of A Robot’s Geometrical Parameters on Its Optimal Dynamic Performance,” In: International Conference on Intelligent Control and Instrumentation, vol. 2 (February 1992) pp. 820825.Google Scholar
Peiper, D. L., The kinematics of manipulators under computer control. Technical report, STANFORD UNIV CA (1968).Google Scholar
González-Palacios, M. A., “Advanced engineering platform for industrial development,” J. Appl. Res. Technol. 10(3), 309326 (2012).CrossRefGoogle Scholar
Craig, J. J.. Robótica. 3a edition (Pearson Educación, México, 2006).Google Scholar
King, R. B.. Beyond the Quartic Equation (Springer Science & Business Media, 2009).CrossRefGoogle Scholar
Shmakov, S. L., “A universal method of solving quartic equations,” Int. J. Pure Appl. Math. 71(2), 251259 (2011).Google Scholar
Barrientos, A., Peñin, L. F., Balaguer, C. and Aracil, R.. Fundamentos de Robótica (McGraw-Hill, 2007).Google Scholar
Castillo, S. A. and Caberta, R. Ñ, Caracterización de un robot manipulador articulado. Coordinación de Mecatrónica, Tesis de Maestría (CENIDET, México, Junio del, 2003).Google Scholar
User guides for acr-view software. (2019). Accessed: 2019-06-21. Available at: http://www.parkermotion.com/support.htm.Google Scholar
Storn, R. and Price, K., “Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11(4), 341359 (1997).CrossRefGoogle Scholar