Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T13:20:12.067Z Has data issue: false hasContentIssue false

End-effector path tracking of a 14 DOF Rover Manipulator System in CG-Space framework

Published online by Cambridge University Press:  17 November 2023

Shubhi Katiyar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
Ashish Dutta
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
*
Corresponding author: Shubhi Katiyar; Email: shubhipragya@gmail.com

Abstract

In order to resolve redundancy and path planning of a high DOF mobile manipulator using conventional approaches like Jacobian and a pseudoinverse method, researchers face the limitation of computational load and delay in response. If such kind of mobile manipulator is traversing the rough terrain, then conventional methods become too costly to implement due to the handling of redundant joints, obstacles, and wheel-terrain interaction. A few optimization-based redundancy resolution approaches try incorporating wheel-terrain interaction but fail in real-time response. This paper describes a 14 DOF Rover Manipulator System’s end-effector path-tracking approach using CG-Space framework to incorporate wheel-terrain interaction. CG-Space means the center of gravity (CG) locus of the Rover. The Rover’s CG is calculated while traversing over 3D terrain using a multivariable optimization method and a 3D point cloud image of the actual terrain and stored as CG-Space over the given terrain. First of all, we decide which part of the system moves to track the path, that is, arm or Rover, depending upon the manipulator’s work volume and manipulability measure restrictions. The next task is to obtain the Rover pose according to the end-effector path using a simple arm’s inverse kinematic solution between the CG-Space and end-effector task space without resolving redundancy. Meanwhile, obstacles and non-traversable regions are avoided in CG-Space. On diverse 3D terrains, simulation and experimental results support the suggested CG-Space framework for end-effector tracking.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Datta, S., Ray, R. and Banerji, D., “Development of autonomous mobile robot with manipulator for manufacturing environment,” Int. J. Adv. Manuf. Technol. 38(5-6), 536542 (2008). doi: 10.1007/s00170-007-1024-x.CrossRefGoogle Scholar
Bøgh, S., Hvilshøj, M., Kristiansen, M. and Madsen, O., “Identifying and evaluating suitable tasks for autonomous industrial mobile manipulators (AIMM),” Int. J. Adv. Manuf. Technol. 61(5-8), 713726 (2012). doi: 10.1007/s00170-011-3718-3.CrossRefGoogle Scholar
Miller, D. P. and Lee, T. L., “High-Speed Traversal of Rough Terrain Using a Rocker-Bogie Mobility System,” Space 2002 Robot, Albuquerque, New Mexico (American Society of Civil Engineers, 2002) pp. 428434. doi:10.1061/40625(203)54.CrossRefGoogle Scholar
Lindemann, R. A., Bickler, D. B., Harrington, B. D., Ortiz, G. M. and Voothees, C. J., “Mars exploration rover mobility development,” IEEE Robot. Autom. Mag. 13(2), 1926 (2006). doi: 10.1109/MRA.2006.1638012.CrossRefGoogle Scholar
Makovsky, A., Ilott, P. and Taylor, J., “Mars science laboratory telecommunications system design,” DESCANSO Des. Perform. Summary Ser., Article 14, 3235 (2009) DESCANSO/JPL, Pasadena. https://descanso.jpl.nasa.gov/DPSummary/summary.html.Google Scholar
Katiyar, S. and Dutta, A., “Path Planning and Obstacle Avoidance in CG Space of a 10 DOF Rover Using RRT* ,” Proceedings of the Advances in Robotics, Chennai, India (ACM, 2019) pp. 16. doi:10.1145/3352593.3352615.CrossRefGoogle Scholar
Lee, J.-K. and Cho, H. S., “Mobile manipulator motion planning for multiple tasks using global optimization approach,” J. Intell. Robot. Syst. 18(2), 169190 (1997). doi: 10.1023/A:1007939823675.CrossRefGoogle Scholar
Park, J., Choi, Y., Chung, W. K. and Youm, Y., “Multiple Tasks Kinematics Using Weighted Pseudoinverse for Kinematically Redundant Manipulators,” Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, South Korea (IEEE, 2001) pp. 40414047. doi:10.1109/ROBOT.2001.933249.CrossRefGoogle Scholar
Liao, B. and Liu, W., “Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators,” Robotica 33(10), 21002113 (2015). doi: 10.1017/S0263574714001349.CrossRefGoogle Scholar
Hootsmans, N. A. M. and Dubowsky, S., “Large Motion Control of Mobile Manipulators Including Vehicle Suspension Characteristics,” Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (IEEE Computer Society Press, 1991) pp. 23362341. doi:10.1109/ROBOT.1991.131751.CrossRefGoogle Scholar
Goldenberg, A., Benhabib, B. and Fenton, R., “A complete generalized solution to the inverse kinematics of robots,” IEEE J. Robot. Autom. 1(1), 1420 (1985). doi: 10.1109/JRA.1985.1086995.CrossRefGoogle Scholar
Raja, R., Dasgupta, B. and Dutta, A., “Motion Planning and Redundancy Resolution of a Rover Manipulator,” 2015 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Dhaka, Bangladesh (IEEE, 2015) pp. 9093. doi:10.1109/WIECON-ECE.2015.7444006.CrossRefGoogle Scholar
Bayle, B., Fourquet, J.-Y., Lamiraux, F. and Renaud, M., “Kinematic Control of Wheeled Mobile Manipulators,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (IEEE, 2002) pp. 15721577. doi:10.1109/IRDS.2002.1043979.CrossRefGoogle Scholar
Bayle, B., Fourquet, J.-Y. and Renaud, M., Génération de mouvements des manipulateurs mobiles. 35, 809845 (2001).Google Scholar
Jin, L. and Zhang, Y., “Discrete-time Zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation,” Neurocomputing 142, 165173 (2014). doi: 10.1016/j.neucom.2014.04.051.CrossRefGoogle Scholar
Klein, C. A. and Huang, C.-H., “Review of pseudoinverse control for use with kinematically redundant manipulators,” IEEE Trans. Syst. Man Cybern. SMC-13(2), 245250 (1983).CrossRefGoogle Scholar
Chen, D., Li, S., Wu, Q. and Luo, X., “New disturbance rejection constraint for redundant robot manipulators: An optimization perspective,” IEEE Trans. Ind. Inform. 16(4), 22212232 (2019).CrossRefGoogle Scholar
He, W., Yan, Z., Sun, Y., Ou, Y. and Sun, C., “Neural-learning-based control for a constrained robotic manipulator with flexible joints,” IEEE Trans. Neural Networks Learn. Syst. 29(12), 59936003 (2018).CrossRefGoogle ScholarPubMed
Wang, H. and Kang, S., “Adaptive neural command filtered tracking control for flexible robotic manipulator with input dead-zone,” IEEE Access 7, 2267522683 (2019). doi: 10.1109/ACCESS.2019.2899459.CrossRefGoogle Scholar
Yang, C., Jiang, Y., Na, J., Li, Z., Cheng, L. and Su, C.-Y., “Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics,” IEEE Trans. Fuzzy Syst. 27(3), 574588 (2018).CrossRefGoogle Scholar
Na, J., Jing, B., Huang, Y., Gao, G. and Zhang, C., “Unknown system dynamics estimator for motion control of nonlinear robotic systems,” IEEE Trans. Ind. Electron. 67(5), 38503859 (2019).CrossRefGoogle Scholar
Wang, H., Zou, Y., Liu, P. X. and Liu, X., “Robust fuzzy adaptive funnel control of nonlinear systems with dynamic uncertainties,” Neurocomputing 314, 299309 (2018). doi: 10.1016/j.neucom.2018.06.053.CrossRefGoogle Scholar
De Luca, A., Oriolo, G. and Giordano, P. R., “Kinematic Modeling and Redundancy Resolution for Non-Holonomic Mobile Manipulators,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (2006) pp. 18671873.Google Scholar
Luca, A. D., Oriolo, G. and Giordano, P. R., “Image-based visual servoing schemes for non-holonomic mobile manipulators,” Robotica 25(2), 131145 (2007). doi: 10.1017/S0263574706003262.CrossRefGoogle Scholar
Hacot, H., The Kinematic Analysis and Motion Control of a Planetary Rover Master’s Thesis (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1998) pp. 3154.Google Scholar
Seraji, H., “A unified approach to motion control of mobile manipulators,” Int. J. Robot. Res. 17(2), 107118 (1998).CrossRefGoogle Scholar
Xing, H., Gong, Z., Ding, L., Torabi, A., Chen, J., Gao, H. and Tavakoli, M., “An adaptive multi-objective motion distribution framework for wheeled mobile manipulators via null-space exploration,” Mechatronics 90, 102949 (2023). doi: 10.1016/j.mechatronics.2023.102949.CrossRefGoogle Scholar
Heins, A., Jakob, M. and Schoellig, A. P., “Mobile Manipulation in Unknown Environments with Differential Inverse Kinematics Control,” 2021 18th Conference on Robots and Vision (CRV 2021), Burnaby, BC, Canada (IEEE, 2021) pp. 6471. doi:10.1109/CRV52889.2021.00017.CrossRefGoogle Scholar
Tchoń, K. and Jakubiak, J., “A hyperbolic, extended Jacobian inverse kinematics algorithm for mobile manipulators,” IFAC Proc. Vol. 38(1), 4348 (2005).CrossRefGoogle Scholar
Hudson, N., Backes, P., DiCicco, M. and Bajracharya, M., “Estimation and Control for Autonomous Coring from a Rover Manipulator,” 2010 IEEE Aerospace Conference (IEEE, 2010) pp. 110.CrossRefGoogle Scholar
Hamner, B., Koterba, S., Shi, J., Simmons, R. and Singh, S., “An autonomous mobile manipulator for assembly tasks,” Auton. Robot. 28(1), 131149 (2010).CrossRefGoogle Scholar
Akli, I., Haddad, M., Bouzouia, B. and Achour, N., “Trajectory Generation for Operational Task Execution with Manipulability Analysis,” 2011 15th International Conference on Advanced Robotics (ICAR) (IEEE, 2011) pp. 9499.CrossRefGoogle Scholar
Sandakalum, T. and Ang, M. H., “Motion planning for mobile manipulators—A systematic review,” Machines 10(2), 97 (2022). doi: 10.3390/machines10020097.CrossRefGoogle Scholar
Kar, I. and Behera, L., “Visual motor control of a 7 DOF robot manipulator using a fuzzy SOM network,” Intel. Serv. Robot. 3(1), 4960 (2010).CrossRefGoogle Scholar
Xiao, H., Li, Z., Yang, C., Zhang, L., Yuan, P., Ding, L. and Wang, T., “Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization,” IEEE Trans. Ind. Electron. 64(1), 505516 (2016).CrossRefGoogle Scholar
Kumar, S., Kumar, P. P., Dutta, A. and Behera, L., “Visual motor control of a 7DOF redundant manipulator using redundancy preserving learning network,” Robotica 28(6), 795810 (2010).CrossRefGoogle Scholar
Xu, D., Zhao, D., Yi, J. and Tan, X., “Trajectory tracking control of omnidirectional wheeled mobile manipulators: Robust neural network-based sliding mode approach,” IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(3), 788799 (2009).Google ScholarPubMed
Bayle, B., Fourquet, J.-Y. and Renaud, M., “Manipulability of wheeled mobile manipulators: Application to motion generation,” Int. J. Robot. Res. 22(7-8), 565581 (2003).CrossRefGoogle Scholar
Bócsi, B., Nguyen-Tuong, D., Csató, L., Schoelkopf, B. and Peters, J., “Learning Inverse Kinematics with Structured Prediction,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2011) pp. 698703.CrossRefGoogle Scholar
Sturm, J. and Burgard, W., “Learning Probabilistic Models for Mobile Manipulation Robots,” IJCAI (2013) pp. 31313135.Google Scholar
Akbaripour, H. and Masehian, E., “Semi-lazy probabilistic roadmap: A parameter-tuned, resilient and robust path planning method for manipulator robots,” Int. J. Adv. Manuf. Technol. 89(5-8), 14011430 (2017). doi: 10.1007/s00170-016-9074-6.CrossRefGoogle Scholar
Moubarak, P. and Ben-Tzvi, P., “A globally converging algorithm for adaptive manipulation and trajectory following for mobile robots with serial redundant arms,” Robotica 31(8), 12991311 (2013). doi: 10.1017/S0263574713000520.CrossRefGoogle Scholar
Lopez-Franco, C., Hernandez-Barragan, J., Alanis, A. Y. and Arana-Daniel, N., “A soft computing approach for inverse kinematics of robot manipulators,” Eng. Appl. Artif. Intell. 74, 104120 (2018).CrossRefGoogle Scholar
Bedaka, A. K., Vidal, J. and Lin, C.-Y., “Automatic robot path integration using three-dimensional vision and offline programming,” Int. J. Adv. Manuf. Technol. 102(5-8), 19351950 (2019). doi: 10.1007/s00170-018-03282-w.CrossRefGoogle Scholar
Tan, N., Zhu, Z. and Yu, P., “Neural-Network-Based Control of Wheeled Mobile Manipulators With Unknown Kinematic Models,” 2020 International Symposium on Autonomous Systems (ISAS 2020), Guangzhou, China (IEEE, 2020) pp. 212216. doi: 10.1109/ISAS49493.2020.9378850.CrossRefGoogle Scholar
Jangid, H., Jain, S., Teka, B., Raja, R. and Dutta, A., “Kinematics-based end-effector path control of a mobile manipulator system on an uneven terrain using a two-stage support vector machine,” Robotica 38(8), 14151433 (2020).CrossRefGoogle Scholar
Kumar, S., Behera, L. and McGinnity, T. M., “Kinematic control of a redundant manipulator using an inverse-forward adaptive scheme with a KSOM based hint generator,” Robot. Auton. Syst. 58(5), 622633 (2010).CrossRefGoogle Scholar
Tan, X., Zhao, D., Yi, J., Hou, Z.-G. and Xu, D., “Unified Model and Robust Neural-Network Control of Omnidirectional Mobile Manipulators,” 6th IEEE International Conference on Cognitive Informatics (IEEE, 2007) pp. 411418.CrossRefGoogle Scholar
Chen, D. and Zhang, Y., “Robust zeroing neural-dynamics and its time-varying disturbances suppression model applied to mobile robot manipulators,” IEEE Trans. Neural Networks Learn. Syst. 29(9), 43854397 (2017).CrossRefGoogle ScholarPubMed
Kohonen, T., Self-Organization and Associative Memory (Springer-Verlag, Berlin, 1984).Google Scholar
Raja, R., Dutta, A. and Dasgupta, B., “KSOM Based Learning for Cooperative Motion of a Redundant Rover-Manipulator on an Uneven Terrain,” International Conference on Control, Automation, Robotics and Vision, ICARCV 2014 (2014) pp. 16771682. doi:10.1109/ICARCV.2014.7064568.CrossRefGoogle Scholar
Raja, R., Dutta, A. and Dasgupta, B., “Cooperative Motion of a Redundant Rover-Manipulator on an Uneven Terrain,” 2017 18th International Conference on Control, Automation, Robotics and Vision (ICARCV), Hong Kong, China (IEEE, 2017) pp. 16771682. doi:10.1109/ICAR.2017.8023502.CrossRefGoogle Scholar
Raja, R., Dutta, A. and Dasgupta, B., “Learning framework for inverse kinematics of a highly redundant mobile manipulator,” Robot. Auton. Syst. 120, 103245 (2019). doi: 10.1016/j.robot.2019.07.015.CrossRefGoogle Scholar
Teka, B., Raja, R. and Dutta, A., “Learning based end effector tracking control of a mobile manipulator for performing tasks on an uneven terrain,” Int. J. Intell. Robot. Appl. 3(2), 102114 (2019).CrossRefGoogle Scholar
Teka, B. and Dutta, A., “Modeling and simulation of cooperative transport of an object by two mobile manipulators on an uneven terrain using KSOM network,” Int. J. Model. Simul. 41(1), 3951 (2021).CrossRefGoogle Scholar
Mishra, S., Londhe, P. S., Mohan, S., Vishvakarma, S. K. and Patre, B. M., “Robust task-space motion control of a mobile manipulator using a nonlinear control with an uncertainty estimator,” Comput. Electr. Eng. 67, 729740 (2018). doi: 10.1016/j.compeleceng.2017.12.018.CrossRefGoogle Scholar
Seo, I. S. and Han, S. I., “Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator,” ISA Trans. 80, 322335 (2018). doi: 10.1016/j.isatra.2018.07.023.CrossRefGoogle ScholarPubMed
Ram, R. V., Pathak, P. M. and Junco, S. J., “Inverse kinematics of mobile manipulator using bidirectional particle swarm optimization by manipulator decoupling,” Mech. Mach. Theory 131, 385405 (2019). doi: https://doi.org/10.1016/j.mechmachtheory.2018.09.022.CrossRefGoogle Scholar
Liu, C., Cao, G.-H., Qu, Y.-Y. and Cheng, Y.-M., “An improved PSO algorithm for time-optimal trajectory planning of Delta robot in intelligent packaging,” Int. J. Adv. Manuf. Technol. 107(3-4), 10911099 (2020). doi: 10.1007/s00170-019-04421-7.CrossRefGoogle Scholar
Colucci, G., Tagliavini, L., Botta, A., Baglieri, L. and Quaglia, G., “Decoupled motion planning of a mobile manipulator for precision agriculture,” Robotica 41(6), 18721887 (2023). doi: 10.1017/S0263574723000243.CrossRefGoogle Scholar
Korayem, M. H. and Dehkordi, S. F., “Dynamic modeling of flexible cooperative mobile manipulator with revolute-prismatic joints for the purpose of moving common object with closed kinematic chain using the recursive Gibbs-Appell formulation,” Mech. Mach. Theory 137, 254279 (2019). doi: 10.1016/j.mechmachtheory.2019.03.026.CrossRefGoogle Scholar
Khan, A. H., Li, S., Chen, D. and Liao, L., “Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach,” Neurocomputing 400, 272284 (2020). doi: 10.1016/j.neucom.2020.02.109.CrossRefGoogle Scholar
Gómez, J., Treesatayapun, C. and Morales, A., “Data-driven identification and control based on optic tracking feedback for robotic systems,” Int. J. Adv. Manuf. Technol. 113(5-6), 14851503 (2021). doi: 10.1007/s00170-020-06377-5.CrossRefGoogle Scholar
Song, J. and Sharf, I., “Stability-constrained mobile manipulation planning on rough terrain,” Robotica 40(11), 40904119 (2022). doi: 10.1017/S0263574722000777.CrossRefGoogle Scholar
Spong, M. W. and Vidyasagar, M., Robot Dynamics and Control (Wiley, New York, 2004).Google Scholar
Pagliari, D. and Pinto, L., “Calibration of kinect for xbox one and comparison between the two generations of microsoft sensors,” Ah S Sens. 15(11), 2756927589 (2015).CrossRefGoogle ScholarPubMed
Raposo, C., Barreto, J. P. and Nunes, U., “Fast and Accurate Calibration of a Kinect Sensor,” 2013 International Conference on 3D Vision (3DV) (2013) pp. 342349. doi:10.1109/3DV.2013.52.CrossRefGoogle Scholar
Lachat, E., Macher, H., Mittet, M. A., Landes, T. and Grussenmeyer, P., “First experiences with Kinect v2 sensor for close range 3D modelling,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 40, 93100 (2015). doi: https://doi.org/10.5194/isprsarchives-XL-5-W4-93-2015.CrossRefGoogle Scholar
Basso, F., Menegatti, E. and Pretto, A., “Robust intrinsic and extrinsic calibration of RGB-D cameras,” IEEE Trans. Robot. 34(5), 13151332 (2018). doi: 10.1109/TRO.2018.2853742.CrossRefGoogle Scholar
Point Cloud Library (PCL): pcl::registration::TransformationEstimationSVD Class Template Reference (n.d.) (accessed April 15, 2021). Available at: https://pointclouds.org/documentation/classpcl_1_1registration_1_1_transformation_estimation_s_v_d.Google Scholar
Yoshikawa, T., Foundations of Robotics: Analysis and Control (MIT Press, Cambridge, Massachusetts, 1990).Google Scholar
MATLAB Documentation - MathWorks India (n.d.) (accessed April 15, 2021). Available at: https://in.mathworks.com/help/matlab/ref/spline.html.Google Scholar
Park, J.-H., Shin, Y.-D., Bae, J.-H. and Baeg, M.-H., “Spatial uncertainty model for visual features using a kinectTM sensor,” Ah S Sens. 12(7), 86408662 (2012). doi: 10.3390/s120708640.CrossRefGoogle Scholar
Raja, R., Dutta, A. and Venkatesh, K. S., “New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover,” Robot. Auton. Syst. 72, 295306 (2015). doi: 10.1016/j.robot.2015.06.002.CrossRefGoogle Scholar