Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T12:40:20.529Z Has data issue: false hasContentIssue false

Dynamical electromagnetic actuation system for microscale manipulation

Published online by Cambridge University Press:  05 April 2022

Levent Çetin*
Affiliation:
Department of Mechatronics Engineering, Izmir Katip Çelebi University, Izmir, Turkey
Abdulkareem Alasli
Affiliation:
Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan
Nail Akçura
Affiliation:
Department of Mechatronics Engineering, Institute of Applied Sciences, Dokuz Eylül University, Izmir, Turkey
Aytaç Kahveci
Affiliation:
Department of Mechhanical Engineering, Institute of Applied Scciences, Izmir Katip Çelebi University, Izmir, Turkey
Fatih Cemal Can
Affiliation:
Department of Mechatronics Engineering, Izmir Katip Çelebi University, Izmir, Turkey
Özgür Tamer
Affiliation:
Department of Electrical Electronics Engineering, Dokuz Eylül University, Izmir, Turkey
*
*Corresponding author. E-mail: levent.cetin@ikcu.edu.tr

Abstract

Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157 $\mu$ m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191 $\mu$ m.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martel, S., Felfoul, O., Mathieu, J. B., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz, M. and Tabatabaei, N., “MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries,” Int. J. Robot. Res. 28(9), 11691182 (2009).CrossRefGoogle ScholarPubMed
Nelson, B. J., Kaliakatsos, I. K. and Abbott, J. J., “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng. 12(1), 5585 (2010).CrossRefGoogle ScholarPubMed
Ongaro, F., Pane, S., Scheggi, S. and Misra, S., “Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots,” IEEE Trans. Robot. 35(1), 174183 (2018).CrossRefGoogle Scholar
Giltinan, J., Sridhar, V., Bozuyuk, U., Sheehan, D. and Sitti, M., “3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots,” Adv. Intell. Syst. 3(1), 2000204 (2021).CrossRefGoogle ScholarPubMed
Fan, X., Dong, X., Karacakol, A. C., Xie, H. and Sitti, M., “Reconfigurable multifunctional ferrofluid droplet robots,” Proc. Nat. Acad. Sci. 117(45), 2791627926 (2020).CrossRefGoogle ScholarPubMed
Şahin, M. A., Çetin, B. and Özer, M. B., “Investigation of effect of design and operating parameters on acoustophoretic particle separation via 3D device-level simulations,” Microfluid. Nanofluid. 24(1), 118 (2020).CrossRefGoogle Scholar
Pernette, E., Henein, S., Magnani, I. and Clavel, R., “Design of parallel robots in microrobotics,” Robotica 15(4), 417420 (1997).CrossRefGoogle Scholar
Shimoyama, I., Yasuda, T., Miura, H., Kubo Fujisawa, Y. and Ezura, Y., “Mobile microrobots,” Robotica 14(5), 469476 (1996).CrossRefGoogle Scholar
Ceylan, H., Giltinan, J., Kozielski, K. and Sitti, M., “Mobile microrobots for bioengineering applications,” Lab Chip 17(10), 17051724 (2017).CrossRefGoogle ScholarPubMed
Kortschack, A., Shirinov, A., Trüper, T. and Fatikow, S., “Development of mobile versatile nanohandling microrobots: Design, driving principles, haptic control,” Robotica 23(4), 419434 (2005).CrossRefGoogle Scholar
Xu, T., Yu, J., Yan, X., Choi, H. and Zhang, L., “Magnetic actuation based motion control for microrobots: An overview,” Micromachines 6c(9), 13461364 (2015).CrossRefGoogle Scholar
Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., Habibi, N., Hošovsky, A., Iacovacci, V., I., S., Khalil, etal, “Magnetic actuation methods in bio/soft robotics,” Adv. Funct. Mater. 31(11), 2005137 (2021).CrossRefGoogle Scholar
Tottori, S., Zhang, L., Qiu, F., Krawczyk, K. K., Franco-Obregõn, A. and Nelson, B. J., “Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport,” Adv. Mater. 24(6), 811816 (2012).CrossRefGoogle ScholarPubMed
Xu, T., Hwang, G., Andreff, N. and Régnier, S., “Planar path following of 3-D steering scaled-up helical microswimmers,” IEEE Trans. Robot. 31a(1), 117127 (2015).CrossRefGoogle Scholar
Mahoney, A. W. and Abbott, J. J., “Generating rotating magnetic fields with a single permanent magnet for propulsion of untethered magnetic devices in a Lumen,” IEEE Trans. Robot. 30(2), 411420 (2014).CrossRefGoogle Scholar
Xu, T., Hwang, G., Andreff, N. and Régnier, S., “Characterization of Three-Dimensional Steering for Helical Swimmers,” In: IEEE International Conference on Robotics and Automation (ICRA, 2014) (IEEE, 2014) pp. 46864691.CrossRefGoogle Scholar
Mahoney, A. W. and Abbott, J. J., “Generating rotating magnetic fields with a single permanent magnet for propulsion of untethered magnetic devices in a Lumen,” IEEE Trans. Robot. 30(2), 411420 (2013).CrossRefGoogle Scholar
Hajiaghajani, A., Kim, D., Abdolali, A. and Ahn, S., “Patterned magnetic fields for remote steering and wireless powering to a swimming microrobot,” IEEE/ASME Trans. Mechatron. 25(1), 207216 (2020).CrossRefGoogle Scholar
Chen, R., Folio, D. and Ferreira, A., “Mathematical approach for the design configuration of magnetic system with multiple electromagnets,” Robot. Autonom. Syst. 135(1), 103674 (2021).CrossRefGoogle Scholar
Choi, J., Choi, H., Jeong, S., Park, B. J., Ko, S. Y., Park, J. O. and Park, S., “Position-based compensation of electromagnetic fields interference for electromagnetic locomotive microrobot,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 227(9), 19151926 (2013).CrossRefGoogle Scholar
Xie, H., Fan, X., Sun, M., Lin, Z., He, Q. and Sun, L., “Programmable generation and motion control of a snakelike magnetic microrobot swarm,” IEEE/ASME Trans. Mechatron. 24(3), 902912 (2019).CrossRefGoogle Scholar
Go, G., Choi, H., Jeong, S., Lee, C., Ko, S. Y., Park, J. O. and Park, S., “Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot,” IEEE Trans. Magn. 51(4), 17 (2015).Google Scholar
Petruska, A. J. and Nelson, B. J., “Minimum bounds on the number of electromagnets required for remote magnetic manipulation,” IEEE Trans. Robot. 31(3), 714722 (2015).CrossRefGoogle Scholar
Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., Nelson, B. J., Kummer, M. P., Abbott, J. J., Borer, R., Ergeneman, O., Nelson, B. J., “Octomag: An electromagnetic system for 5-DOF wireless micromanipulation,” IEEE Trans. Robot. 26(6), 10061017 (2010).CrossRefGoogle Scholar
Diller, E., Giltinan, J., Lum, G. Z., Ye, Z. and Sitti, M., “Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots,” In: Proceedings of Robotics: Science and Systems (2014).CrossRefGoogle Scholar
Kim, J., Choi, H. and Kim, J., “A robust motion control with antiwindup scheme for electromagnetic actuated microrobot using time-delay estimation,” IEEE/ASME Trans. Mechatron. 24(3), 10961105 (2019).CrossRefGoogle Scholar
Sikorski, J., Dawson, I., Denasi, A., Hekman, E. E. and Misra, S., “Introducing Bigmag–A Novel System for 3D Magnetic Actuation of Flexible Surgical Manipulators,” In: 2017 IEEE International Conference on Robotics and Automation (ICRA) (2017) pp. 35943599.Google Scholar
Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K. and Nelson, B. J., “How should microrobots swim?,” Int. J. Robot. Res. 28(11–12), 14341447 (2009).CrossRefGoogle Scholar
Ciuti, G., Donlin, R., Valdastri, P., Arezzo, A., Menciassi, A., Morino, M. and Dario, P., “Robotic versus manual control in magnetic steering of an endoscopic capsule,” Endoscopy 42(02), 148152 (2009).CrossRefGoogle ScholarPubMed
Tognarelli, S., Castelli, V., Ciuti, G., Di Natali, C., Sinibaldi, E., Dario, P. and Menciassi, A., “Magnetic propulsion and ultrasound tracking of endovascular devices,” J. Robot. Surg. 6(1), 512 (2012).CrossRefGoogle ScholarPubMed
Fountain, T. W. R., Kailat, P. V. and Abbott, J. J., “Wireless Control of Magnetic Helical Microrobots Using a Rotating-Permanent-Magnet Manipulator,” In: Proceedings - IEEE International Conference on Robotics and Automation (2010) pp. 576–581 .CrossRefGoogle Scholar
Wright, S. E., Mahoney, A. W., Popek, K. M. and Abbott, J. J., “The Spherical-Actuator-Magnet manipulator: a Permanent-Magnet robotic End-Effector,” IEEE Trans. Robot. 33(5), 10131024 (2017).CrossRefGoogle Scholar
Amokrane, W., Belharet, K., Souissi, M. and Ferreira, A., “Modeling and Validation of a Magnetic Actuator Based Rectangular Permanent Magnets,” In: International Conference on Manipulation, Automation and Robotics at Small Scales, MARSS Proceedings (2017) pp. –1-6.Google Scholar
Amokrane, W., Belharet, K., Souissi, M., Grayeli, A. B. and Ferreira, A., “Macro–micromanipulation platform for inner ear drug delivery,” Robot. Auton. Syst. 107(5), 1019 (2018).CrossRefGoogle Scholar
Alasli, A., Çetin, L., Akçura, N., Kahveci, A., Can, F. C. and Tamer, Ö., “Electromagnet design for untethered actuation system mounted on robotic manipulator,” Sens. Actuat. A Phys. 285, 550565 (2019).CrossRefGoogle Scholar
Akcura, N., Alasli, A., Cetin, L. and Tamer, O., “Calibration of Feedback for Electromagnet Current Control,” In: IEEE World Electro Mobility Conference (vol. 1, 2017) pp. 137143.Google Scholar
Grabner, H., Leistner, C. and Bischof, H., “Semi-Supervised On-line Boosting for Robust Tracking,” In: European Conference on Computer Vision 2008 (Springer, 2018) pp. 234247.CrossRefGoogle Scholar
Khalil, I. S. M., Magdanz, V., Sanchez, S. and et al., “Biocompatible, accurate, and fully autonomous: A sperm-driven micro-bio-robot,” J. Micro.-Bio. Robot. 9(3-4), 7986 (2014).CrossRefGoogle Scholar
Diller, E., Giltinan, J. and Sitti, M., “Independent control of multiple magnetic microrobots in three dimensions,” Int. J. Robot. Res. 32(5), 614631 (2013).CrossRefGoogle Scholar
Heunis, C. M., Wotte, Y. P., Sikorski, J., Furtado, G. P. and Misra, S., “The ARMM system - autonomous steering of magnetically-Actuated catheters: Towards endovascular applications,” IEEE Robot. Automat. Lett. 5(2), 705712 (2020).CrossRefGoogle Scholar
Franz, A. M., Haidegger, T., Birkfellner, W., Cleary, K., Peters, T. M. and Maier-Hein, L., “Electromagnetic tracking in medicine —A review of technology, validation, and applications,” IEEE Trans. Med. Imag. 33(8), 17021725 (2014).CrossRefGoogle Scholar

Çetin et al. supplementary material

Çetin et al. supplementary material

Download Çetin et al. supplementary material(Audio)
Audio 96.4 MB