Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:00:05.274Z Has data issue: false hasContentIssue false

Development of portable robotic orthosis and biomechanical validation in people with limited upper limb function after stroke

Published online by Cambridge University Press:  06 July 2022

Fernanda Márcia Rodrigues Martins Ferreira*
Affiliation:
Graduate Program in Mechanical Engineering, Bioengineering Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil CAMIN, INRIA, University of Montpellier, Montpellier, France
Guilherme de Paula Rúbio
Affiliation:
Graduate Program in Mechanical Engineering, Bioengineering Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Rina Mariane Alves Dutra
Affiliation:
Graduate Program in Mechanical Engineering, Bioengineering Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Department of Telecommunications and Mechatronics Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brazil
Adriana Maria Valladão Novais Van Petten
Affiliation:
Department of Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Claysson Bruno Santos Vimieiro
Affiliation:
Graduate Program in Mechanical Engineering, Bioengineering Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Graduate Program in Mechanical Engineering, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
*
*Corresponding author. E-mail: fernandaferreira.to@gmail.com

Abstract

Stroke has a considerable incidence in the world population and would cause sequelae in the upper limbs. One way to increase the efficiency in the rehabilitation process of patients with these sequelae is through robot-assisted therapy. The present study developed a portable robotic orthosis called Pinotti Portable Robotic Exoskeleton (PPRE) and validated its functioning in clinical tests. The static and dynamic parts of the device modules are described. Design issues, such as heavyweight and engine positioning, have been optimized. The implementation of control was through a smartphone application that communicates with a microcontroller to perform desired movements. Four individuals with motor impairment of the upper limbs due to stroke performed clinical tests to validate the device. Participants did not mention pain, discomfort, tingling, and paresthesia. The robotic device showed the ability to perform the flexion and extension movements of the fingers and elbow. The PPRE was confirmed to be adequate and functional at different levels of motor impairment assessed. The orthosis presented advantages over the currently existing devices, concerning its biomechanical functioning, portability, comfort, and versatility. Thus, the apparatus has the great innovative potential to become a device for home use, serving as an aid to the therapist and facilitating the rehabilitation of patients after an injury. In a larger sample, future studies are needed to assess the effect of a robotic orthosis on the level of rehabilitation in individuals with upper limb impairment.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpepper, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., Mountjoy-Venning, W. C., Nguyen, M., Ofori-Asenso, R., Patel, A. P., Piccininni, M., Roth, G. A., Steiner, T. J., Stovner, L. J., Szoeke, C. E. I., Theadom, A., Vollset, S. E., Wallin, M. T., Wright, C., Zunt, J. R., Abbasi, N., Abd-Allah, F., Abdelalim, A., Abdollahpour, I., Aboyans, V., Abraha, H. N., Acharya, D., Adamu, A. A., Adebayo, O. M., Adeoye, A. M., Adsuar, J. C., Afarideh, M., Agrawal, S., Ahmadi, A., Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Akinyemi, R. O., Akseer, N., Al-Eyadhy, A., Salman, R. A.-S., Alahdab, F., Alene, K. A., Aljunid, S. M., Altirkawi, K., Alvis-Guzman, N., Anber, N. H., Antonio, C. A. T., Arabloo, J., Aremu, O., Ärnlöv, J., Asayesh, H., Asghar, R. J., Atalay, H. T., Awasthi, A., Quintanilla, B. P. A., Ayuk, T. B., Badawi, A., Banach, M., Belachew, D. A. B., Bensenor, I. M., Berhane, A., Beuran, M., Bhattacharyya, K., Bhutta, Z. A., Biadgo, B., Bijani, A., Bililign, N., Sayeed, M. S. B. C. K. Blazes, C. Brayne, Z. A. Butt, I. R. Campos-Nonato, C. Cantu-Brito, M. Car et al., “Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016.” Lancet Neurol. 18(5), 459-480 (2019) doi: 10.1016/S1474-4422(18)30499-X.Google Scholar
Katan, M. and Luft, A., “Global burden of stroke,” Semin. Neurol. 38(02), 208211 (2018).10.1055/s-0038-1649503CrossRefGoogle ScholarPubMed
d. O. Ferro, A., d. S. Lins, A. E. and Filho, E. M. T., “Comprometimento cognitivo e funcional em pacientes acometidos de acidente vascular encefálico: Importância da avaliação cognitiva para intervenção na Terapia Ocupacional/ognitive and functional impairment in patients suffering from stroke: The importan,” Braz. J. Occup. Therapy 21(3) (2013). doi: 10.4322/cto.2013.054.Google Scholar
Langhorne, P., Bernhardt, J. and Kwakkel, G., “Stroke rehabilitation,” Lancet 377(9778), 16931702 (2011). doi: 10.1016/S0140-6736(11)60325-5.CrossRefGoogle ScholarPubMed
Nakayama, H., Jørgensen, H. S., Raaschou, H. O. and Olsen, T. S.øj, “Recovery of upper extremity function in stroke patients: The Copenhagen stroke study,” Arch. Phys. Med. Rehab. 75(4), 394398 (1994). doi: 10.1016/0003-9993(94)90161-9.CrossRefGoogle ScholarPubMed
o. Physicians, R. C., National clinical guideline for stroke, Report, Intercollegiate Stroke Working (2016).Google Scholar
Sveen, U., Bautz-Holter, E., Sodring, K. M., Wyller, T. B. and Laake, K., “Association between impairments, self-care ability and social activities 1 year after stroke,” Disabil. Rehabil. 21(8), 372377 (1999). doi: 10.1080/096382899297477.CrossRefGoogle ScholarPubMed
Khor, K. X., Chin, P. J. H., Yeong, C. F., Su, E. L. M., Narayanan, A. L. T., Rahman, H. A. and Khan, Q. I., “Portable and reconfigurable wrist robot improves hand function for Post-Stroke subjects,” IEEE Trans. Neur. Sys. Reh. 25(10), 18641873 (2017). doi: 10.1109/TNSRE.2017.2692520.CrossRefGoogle ScholarPubMed
Loureiro, R. C. V., Harwin, W. S., Nagai, K. and Johnson, M., “Advances in upper limb stroke rehabilitation: A technology push,” Med. Biol. Eng. Comput. 49(10), 11031118 (2011). doi: 10.1007/s11517-011-0797-0.CrossRefGoogle ScholarPubMed
Ferreira, F. M. R. M., Chaves, M. E. A., Oliveira, V. C., Van Petten, A. M. V. N. and Vimieiro, C. B. S., “Effectiveness of robot therapy on body function and structure in people with limited upper limb function: A systematic review and meta-analysis,” PLOS ONE 13(7), e0200330 (2018). doi: 10.1371/journal.pone.0200330.CrossRefGoogle Scholar
Mehrholz, J., Pohl, M., Platz, T., Kugler, J. and Elsner, B., “Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke,” Cochrane Db. Syst. Rev. 9(9), 50 (2018). doi: 10.1002/14651858.CD006876.pub5.Google ScholarPubMed
Veerbeek, J. M., Langbroek-Amersfoort, A. C., van Wegen, E. E. H., Meskers, C. G. M. and Kwakkel, G., “Effects of robot-Assisted therapy for the upper limb after stroke: A systematic review and Meta-analysis,” Neurorehab. Neural Re. 31(2), 107121 (2016). doi: 10.1177/1545968316666957.CrossRefGoogle Scholar
Brewer, B. R., McDowell, S. K. and Worthen-Chaudhari, L. C., “Poststroke upper extremity rehabilitation: A review of robotic systems and clinical results,” Top. Stroke Rehabil. 14(6), 2244 (2007). doi: 10.1310/tsr1406-22.CrossRefGoogle ScholarPubMed
Duret, C., Grosmaire, A.-G. and Krebs, H. I., “Robot-assisted therapy in upper extremity hemiparesis: Overview of an evidence-based approach,” Front. Neurol. 10, 412 (2019).10.3389/fneur.2019.00412CrossRefGoogle ScholarPubMed
Sivan, M., O’Connor, R. J., Makower, S., Levesley, M. and Bhakta, B., “Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke,” J. Rehabil. Med. 43(3), 181189 (2011). doi: 10.2340/16501977-0674.CrossRefGoogle ScholarPubMed
Yozbatiran, N. and Francisco, G. E., “Robot-assisted therapy for the upper limb after cervical spinal cord injury,” Phys. Med. Reh. Clin. N 30(2), 367384 (2019). doi: 10.1016/j.pmr.2018.12.008.CrossRefGoogle ScholarPubMed
Dunkelberger, N., Schearer, E. M. and O’Malley, M. K., “A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance,” Exp. Neurol. 328, 113274 (2020). doi: 10.1016/j.expneurol.2020.113274.CrossRefGoogle ScholarPubMed
Chang, W. H., Kim, M. S., Huh, J. P., Lee, P. K. W. and Kim, Y.-H., “Effects of robot-Assisted gait training on cardiopulmonary fitness in subacute stroke patients: A randomized controlled study,” Neurorehab. Neural Re. 26(4), 318324 (2011). doi: 10.1177/1545968311408916.CrossRefGoogle ScholarPubMed
Rahman, M. H., Rahman, M. J., Cristobal, O. L., Saad, M., Kenné, J. P. and Archambault, P. S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33(1), 1939 (2014). doi: 10.1017/S0263574714000034.CrossRefGoogle Scholar
Stein, J., “Robotics in rehabilitation: Technology as destiny,” Am. J. Phys. Med. Rehab. 91(11), S199S203 (2012).10.1097/PHM.0b013e31826bcbbdCrossRefGoogle ScholarPubMed
Washabaugh, E. P., Guo, J., Chang, C. K., Remy, C. D. and Krishnan, C., “A portable passive rehabilitation robot for upper-Extremity functional resistance training,” IEEE Trans. Bio-Med. Eng. 66(2), 496508 (2019). doi: 10.1109/TBME.2018.2849580.CrossRefGoogle ScholarPubMed
Manna, S. K. and Dubey, V. N., “Comparative study of actuation systems for portable upper limb exoskeletons,” Med. Eng. Phys. 60(3), 113 (2018). doi: 10.1016/j.medengphy.2018.07.017.CrossRefGoogle ScholarPubMed
Ferreira, F. M. R. M., d. P. Rúbio, G., d. L. Brandão, F. H., d. Mata, A. M., d. Avellar, N. B. C., Bonfim, J. P. F., Tonelli, L. G., Silva, T. G., Dutra, R. M. A., Petten, A. M. V. N. V., and Vimieiro, C. B. S., “Robotic orthosis for upper limb rehabilitation,” Proceedings 64(1), 10 (2020). doi: 10.3390/IeCAT2020-08519.Google Scholar
Ferreira, F. M. R. M., Chaves, M. E. A., Oliveira, V. C., Martins, J. S. R., Vimieiro, C. B. S. and Van Petten, A. M. V. N., “Effect of robot-assisted therapy on participation of people with limited upper limb functioning: A systematic review with GRADE recommendations,” Occup. Therapy Int. 2021, 6649549. doi: 10.1155/2021/6649549 Google Scholar
Kehayia, E., Swaine, B., Longo, C., Ahmed, S., Archambault, P., Fung, J., Kairy, D., Lamontagne, A., Dorze, G. L., Lefebvre, H., Overbury, O., Poldma, T., “Creating a rehabilitation living lab to optimize participation and inclusion for persons with physical disabilities,” Alter 8(3), 151157 (2014). doi: 10.1016/j.alter.2014.03.006.CrossRefGoogle Scholar
d. P. Rúbio, G., Ferreira, F. M. R. M., d. L. Brandão, F. H., Machado, V. F., Tonelli, L., Kozan, R. F., Santos, C. B. and Vimieiro. Design of Actuators Applied to a Upper Limb Orthosis,” In: Proceedings of the 25th International Congress of Mechanical Engineering (ABCM, Uberlândia, MG, Brasil, 2019). 10.26678/ABCM.COBEM2019.COB2019-0553 Google Scholar
Neumann, D. A., “Cinesiologia do aparelho musculoesquelético: fundamentos para reabilitação. 2 $^{\underline{\circ }}$ Edição. Rio de Janeiro: Elsevier, 2011, 743 p.Google Scholar
Rúbio, G. D., Ferreira, F. M. M., Brandão, F. H., Machado, V. F., Tonelli, L. G., Martins, J. S., Kozan, R. F. and Vimieiro, C. B., “Evaluation of commercial ropes applied as artificial tendons in robotic rehabilitation orthoses,” Appl. Sci. 10(3) (2020). doi: 10.3390/app10030920.CrossRefGoogle Scholar
Wechsler, L. R., Bates, D., Stroemer, P., Andrews-Zwilling, Y. S. and Aizman, I., “Cell therapy for chronic stroke,” Stroke 49(5), 10661074 (2018). doi: 10.1161/STROKEAHA.117.018290.CrossRefGoogle ScholarPubMed
Faria-Fortini, I., Basílio, M. L., Polese, J. C., Menezes, K. K. P., Faria, C. D., Scianni, A. A. and Teixeira-Salmela, L. F., “Caracterização da participação social de indivíduos na fase crônica pós-acidente vascular encefálico,” Revista De Terapia Ocupacional Da Universidade De São Paulo 28(1), 7178 (2017). doi: 10.11606/issn.2238-6149.v28i1p71-78.Google Scholar
Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S. and Steglind, S., “The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance,” Scand. J. Rehabil. Med. 7(1), 1331 (1975).Google ScholarPubMed
Oosterwijk, A. M., Nieuwenhuis, M. K., van der Schans, C. P. and Mouton, L. J., “Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review,” Physiother. Theor. Pr. 34(7), 505528 (2018). doi: 10.1080/09593985.2017.1422206.Google ScholarPubMed
Fagundes, J. S., Binda, A. C., Faria, J. G., Peres, D. and Michaelsen, S. M., “Sensory evaluation tools stroke described in Portuguese: A systematic review,” Fisioterapia e Pesquisa [online] 22(4), 435442 (2015). doi: 10.590/1809-2950/13120122042015.Google Scholar
Bertolucci, P. H., Brucki, S. M., Campacci, S. R. and Juliano, Y., “O Mini-Exame do Estado Mental em uma população geral: Impacto da escolaridade,” Arquivos de Neuro-Psiquiatria [online] 52(1), 0107 (1994). doi: 10.1590/S0004-282X1994000100001.CrossRefGoogle Scholar
Bohannon, R. W. and Smith, M. B., “Interrater reliability of a modified ashworth scale of muscle spasticity,” Phys. Ther. 67(2), 206207 (1987). doi: 10.1093/ptj/67.2.206.CrossRefGoogle ScholarPubMed
Langley, G. B. and Sheppeard, H., “The visual analogue scale: Its use in pain measurement,” Rheumatol. Int. 5(4), 145148 (1985). doi: 10.1007/BF00541514.CrossRefGoogle ScholarPubMed
Cecchi, F., Germanotta, M., Macchi, C., Montesano, A., Galeri, S., Diverio, M., Falsini, C., Martini, M., Mosca, R., Langone, E., Papadopoulou, D., Carrozza, M. C., Aprile, I., “Age is negatively associated with upper limb recovery after conventional but not robotic rehabilitation in patients with stroke: A secondary analysis of a randomized-controlled trial,” J. Neurol. 268(2), 474483 (2021). doi: 10.1007/s00415-020-10143-8.CrossRefGoogle Scholar
Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S. and Bretthauer, G., “Design of A Flexible Fluidic Actuation System for A Hybrid Elbow Orthosis,” In: IEEE Int. Conf. Rehabil. Robot. (IEEE, 2009) pp. 167–171, doi: 10.1109/ICORR.2009.5209540.Google Scholar
Zuccon, G., Bottin, M., Ceccarelli, M. and Rosati, G., “Design and performance of an elbow assisting mechanism,” Machines 8(4), 68 (2020). doi: 10.3390/machines8040068.CrossRefGoogle Scholar
Phan, T. Q., Nguyen, H., Vermillion, B. and Lee, S. W., “Passive Elbow Movement Assistant (PEMA): A Portable Exoskeleton to Compensate Angle-Dependent Tone Profile of the Elbow Joint Post-Stroke,” In: IEEE 16th Int. Conf. Rehabil. Robot. (IEEE,2019) pp. 1209-1214, doi: 10.1109/ICORR.2019.8779365.Google Scholar
Manna, S. K. and Dubey, V. N., “Design proposal for a portable elbow exoskeleton,” In: 2018 Des. Med. Devices Conf. (American Society of Mechanical Engineers, 2018). doi: 10.1115/DMD2018-6931.Google Scholar
Copaci, D., Cano, E., Moreno, L. and Blanco, D., “New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators,” Appl. Bionics Biomech. 2017(4-5), 111 (2017). doi: 10.1155/2017/1605101.CrossRefGoogle ScholarPubMed
Rehab-Robotcs, Hand of hope: Ffor Hand Rehabilitation (2021).Google Scholar
Rehab-Robotcs, Hand of Hope: Experience programme (2021).Google Scholar
Hu, X., Tong, K., Wei, X., Rong, W., Susanto, E. and Ho, S., “The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot,” J. Electromyogr. Kinesiol. 23(5), 10651074 (2013). doi: 10.1016/j.jelekin.2013.07.007.CrossRefGoogle ScholarPubMed
Ogul, O. E., Coskunsu, D. K., Akcay, S., Akyol, K., Hanoglu, L. and Ozturk, N., “The effect of electromyography (EMG)-driven robotic treatment on the recovery of the hand nine years after stroke,” J. Hand Ther. 26(8), 124 (2021). doi: 10.1016/j.jht.2021.04.022.Google Scholar
Nam, C., Rong, W., Li, W., Xie, Y., Hu, X. and Zheng, Y., “The effects of upper-limb training assisted with an electromyography-driven neuromuscular electrical stimulation robotic hand on chronic stroke,” Front. Neurol. 8, 1693 (2017). doi: 10.3389/fneur.2017.00679.CrossRefGoogle ScholarPubMed
Yap, H. K., Jeong Hoon Lim, F. N., Goh, J. C. H. and Yeow, R. C. H., “A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness,” In: IEEE Int. Conf. Robot. Autom. (IEEE, 2015) pp. 4967–4972, doi: 10.1109/ICRA.2015.7139889.Google Scholar
Yap, H. K., Ang, B. W. K., Lim, J. H., Goh, J. C. H. and Yeow, C.-H., “A Fabric-Regulated Soft Robotic Glove with User Intent Detection Using EMG and RFID for Hand Assistive Application,” In: IEEE Int. Conf. Robot. Autom. (IEEE, 2016) pp. 3537–3542, doi: 10.1109/ICRA.2016.7487535.Google Scholar
Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L. and Alberts, J. L., “Quality-of-Life change associated with robotic-Assisted therapy to improve hand motor function in patients with subacute stroke: A randomized clinical trial,” Phys. Ther. 90(4), 493504 (2010). doi: 10.2522/ptj.20090160.CrossRefGoogle ScholarPubMed
Koeneman, E., Schultz, R., Wolf, S., Herring, D. and Koeneman, J., “A pneumatic muscle hand therapy device, 26th Annu,” In: Int. Conf. IEEE Eng. Med. Biol. Soc. (volume 3, IEEE, 2004) pp. 27112713. doi: 10.1109/IEMBS.2004.1403777.Google Scholar
Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. and Walsh, C. J., “Soft robotic glove for combined assistance and at-home rehabilitation,” Rob. Auton. Syst. 73, 135143 (2015). doi: 10.1016/j.robot.2014.08.014.CrossRefGoogle Scholar
Araujo, R. S., Silva, C. R., Netto, S. P. N., Morya, E. and Brasil, F. L., “Development of a Low-Cost EEG-Controlled hand exoskeleton 3D printed on textiles,” Front. Neurosci. 15, 3902 (2021). doi: 10.3389/fnins.2021.661569.CrossRefGoogle ScholarPubMed
Yurkewich, A., Kozak, I. J., Hebert, D., Wang, R. H. and Mihailidis, A., “Hand extension robot orthosis (HERO) grip glove: Enabling independence amongst persons with severe hand impairments after stroke,” J. Neuroeng. Rehabil. 17(1), 33 (2020). doi: 10.1186/s12984-020-00659-5.CrossRefGoogle ScholarPubMed
Gobee, S., Durairajah, V. and Mohammadullah, N., “Portable Soft-exoskeleton for Finger Rehabilitation,” In: Proc. 2017 Int. Conf. Biomed. Eng. Bioinforma. - ICBEB 201765-70 (ACM Press, New York, New York, USA, 2017). doi: 10.1145/3143344.3143346.CrossRefGoogle Scholar
Jo, I., Park, Y., Lee, J. and Bae, J., “A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers,” Mech. Mach. Theory 135, 176191 (2019). doi: 10.1016/j.mechmachtheory.2019.02.004.CrossRefGoogle Scholar
Myomo, FAQs for clinicians (2022).Google Scholar
Page, S. J., Hill, V. and White, S., “Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial,” Clin. Rehabil. 27(6), 494503 (2012). doi: 10.1177/0269215512464795.CrossRefGoogle ScholarPubMed
Willigenburg, N. W., McNally, M. P., Hewett, T. E. and Page, S. J., “Portable myoelectric brace use increases upper extremity recovery and participation but does not impact kinematics in chronic, poststroke hemiparesis,” J. Mot. Behav. 49(1), 4654 (2017). doi: 10.1080/00222895.2016.1152220.CrossRefGoogle Scholar
Peters, H. T., Page, S. J. and Persch, A., “Giving them a hand: Wearing a myoelectric elbow-Wrist-Hand orthosis reduces upper extremity impairment in chronic stroke,” Arch. Phys. Med. Rehabil. 98(9), 18211827 (2017). doi: 10.1016/j.apmr.2016.12.016.CrossRefGoogle Scholar
Xiloyannis, M., Cappello, L., Khanh, D. B., Antuvan, C. W. and Masia, L., “Design and Preliminary Testing of A Soft Exosuit for Assisting Elbow Movements and Hand Grasping,” In: Int. Conf. Neurorehabilitation 2016 (Segovia, Spain, 2016).Google Scholar
Xiloyannis, M., Cappello, L., Dinh, B. K., Antuvan, C. W. and Masia, L., “Design and Preliminary Testing of A Soft Exosuit for Assisting Elbow Movements and Hand Grasping,” In: Converging Clin. Eng. Res. Neurorehabilitation II (Biosystems & Biorobotics, 2017), pp. 557–561 doi: 10.1007/978-3-319-46669-9_92.Google Scholar
Xiloyannis, M., Cappello, L., Binh, K. D., Antuvan, C. W. and Masia, L., “Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living,” J. Rehabil. Assist. Technol. Eng. 4(1), 205566831668031 (2017). doi: 10.1177/2055668316680315.Google ScholarPubMed
Dunaway, S., Dezsi, D. B., Perkins, J., Tran, D. and Naft, J., “Case report on the use of a custom myoelectric elbow-Wrist-Hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke,” Mil. Med. 182(7), e1963e1968 (2017). doi: 10.7205/MILMED-D-16-00399.CrossRefGoogle ScholarPubMed
Murray, I. A. and Johnson, G. R., “A study of the external forces and moments at the shoulder and elbow while performing every day tasks,” Clin. Biomech. 19(6), 586594 (2004). doi: 10.1016/j.clinbiomech.2004.03.004.CrossRefGoogle ScholarPubMed
Aubin, P. M., Sallum, H., Walsh, C., Stirling, L. and Correia, A., “A pediatric robotic thumb exoskeleton for at-home rehabilitation: The isolated orthosis for thumb actuation (IOTA),” 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) (2013) pp. 1–6. doi: 10.1109/ICORR.2013.6650500.CrossRefGoogle Scholar
Neumann, D. A., “Cinesiologia do aparelho musculoesquelético: fundamentos para reabilitação. 3 $^{\underline{\circ }}$ edição (Guanabara koogan,” Rio de Janeiro, 2018).Google Scholar
Conti, R., Allotta, B., Meli, E. and Ridolfi, A., “Development, design and validation of an assistive device for hand disabilities based on an innovative mechanism,” Robotica 35(4), 892906 (2015). doi: 10.1017/S0263574715000879.CrossRefGoogle Scholar
Morone, G., Cocchi, I., Paolucci, S. and Iosa, M., “Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication,” Exp. Rev. Med. Dev. 17(3), 223233 (2020). doi: 10.1080/17434440.2020.1733408.CrossRefGoogle ScholarPubMed
Ercolini, G., Trigili, E., Baldoni, A., Crea, S. and Vitiello, N., “A novel generation of ergonomic upper-Limb wearable robots: Design challenges and solutions,” Robotica 37(12), 20562072 (2018). doi: 10.1017/S0263574718001340.CrossRefGoogle Scholar
Stewart, A., Pretty, C. and Chen, X., “A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation,” BMC Biomed. Eng. 1(1), 30 (2019). doi: 10.1186/s42490-019-0028-6.CrossRefGoogle ScholarPubMed
Basteris, A., Nijenhuis, S. M., Stienen, A. H. A., Buurke, J. H., Prange, G. B. and Amirabdollahian, F., “Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review,” J. Neuroeng. Rehabil. 11(1), 111 (2014). doi: 10.1186/1743-0003-11-111.CrossRefGoogle ScholarPubMed
Vaida, C., Carbone, G., Major, K., Major, Z., Plitea, N. and Pisla, D., “On human robot interaction modalities in the upper limb rehabilitation after stroke,” Acta Tech. Napocensis - Series: Appl. Math. Mech. Eng. 60(1), 91102 (2017).Google Scholar