Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T17:12:09.733Z Has data issue: false hasContentIssue false

Control and disturbances compensation in underactuated robotic systems using the derivative-free nonlinear Kalman filter

Published online by Cambridge University Press:  02 October 2015

Gerasimos G. Rigatos*
Affiliation:
Unit of Industrial Automation, Industrial Systems Institute, 26504, Rion Patras, Greece
*
*Corresponding author. E-mail: grigat@ieee.org

Summary

The Derivative-free nonlinear Kalman Filter is used for developing a robust controller which can be applied to underactuated MIMO robotic systems. The control problem for underactuated robots is non-trivial and becomes further complicated if the robot is subjected to model uncertainties and external disturbances. Using differential flatness theory it is shown that the model of a closed-chain 2-DOF robotic manipulator can be transformed to linear canonical form. For the linearized equivalent of the robotic system it is shown that a state feedback controller can be designed. Since certain elements of the state vector of the linearized system cannot be measured directly, it is proposed to estimate them with the use of a novel filtering method, the so-called Derivative-free nonlinear Kalman Filter. Moreover, by redesigning the Kalman Filter as a disturbance observer, it is shown that one can estimate simultaneously external disturbance terms that affect the robotic model or disturbance terms which are associated with parametric uncertainty. The efficiency of the proposed Kalman Filter-based control scheme is tested in the case of a 2-DOF planar robotic manipulator that has the structure of a closed-chain mechanism.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Franch, J., Agrawal, S. K. and Sangwan, V., “Differential flatness of a class of -DOF planar manipulators driven by 1 or 2 actuators,” IEEE Trans. Autom. Control 55 (2), 548554 (2010).CrossRefGoogle Scholar
2. Zhang, C., Franch, J. and Agrawal, S. K., “Differentially flat design of a closed-chain planar underactuated 2-DOF system,” IEEE Trans. Robot. 29 (1), 277282 (2013).Google Scholar
3. Xin, X., Tanaka, S., She, J. and Yamasaki, T., “New analytical results of energy-based swing-up control for the Pendubot,” Int. J. Non-Linear Mech., 52, 110118 (2013).Google Scholar
4. Lai, X.-Z., Pan, C.-Z., Wu, M. and Yang, S. X., “Unified control of n-link underactuated manipulator with single passive joint: A reduced order approach,” Mech. Mach. Theory, Elsevier 56, 170185 (2012).Google Scholar
5. Lai, X.-Z., She, J.-H., Yang, S. X. and Wu, M., “Comprehensive unified control strategy for underactuated two-link manipulators,” IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39 (2), 389398 (2009).Google Scholar
6. Narikiyoa, T., Sahashib, J. and Misao, K., “Control of a class of underactuated mechanical systems,” Nonlinear Anal.: Hybrid Syst., Elsevier 2, 231241 (2008).Google Scholar
7. Mahindrakar, A. D., Rao, S. and Banavar, R. N., “Point-to-point control of a 2R planar horizontal underactuated manipulator,” Mech. Mach. Theory, Elsevier 41, 838844 (2006).Google Scholar
8. Hong, K. S., “An open-loop control for underactuated manipulators using oscillatory inputs: Steering capability of an unactuated joint,” IEEE Trans. Control Syst. Technol. 10 (3), 469479 (2002).Google Scholar
9. Rubio, J. J., “Adaptive least square control in discrete time of robotic arms,” Soft Comput. (2014). DOI: 10.1007/s00500-014-1300-2.Google Scholar
10. Gao, H., Song, X., Ding, L., Xia, K. and Li, N., “Adaptive motion control of wheeled mobile robot with unknown slippage,” Int. J. Control 87 (8), 15131522 (2014).Google Scholar
11. Torres, C., Rubio, J. J., Aguilar-Ibañez, C. and Perez-Cruz, J. H., “Stable optimal control applied to a cylindrical robotic arm,” Neural Comput. Appl. 24 (3–4), 937944 (2014).Google Scholar
12. Zhang, Y., Yu, X., Yin, Y., Peng, C. and Fan, Z., “Singularity-conquering ZG controllers of z2g1 type for tracking control of the IPC systems,” Int. J. Control 87 (9), 17291746 (2014).Google Scholar
13. Rubio, J. J., Zamudio, Z., Pacheco, J. and Mujica-Vargas, D., “Proportional derivative control with inverse dead-zone for pendulum systems,” Math. Problems Eng. 2013, 19 (2013).Google Scholar
14. Ri, S. H., Huang, J., Wang, Y., Kim, M. H. and An, S., “Terminal sliding mode control of mobile wheeled inverted pendulum system with nonlinear disturbance observer,” Math. Problems Eng. 2014, 18 (2014).Google Scholar
15. Agrawal, S. K. and Sangwan, V., “Differentially flat designs of underactuated open-chain planar robots,” IEEE Trans. Robot. 24 (6), 14451451 (2008).CrossRefGoogle Scholar
16. Franch, J., Reyes, A. and Agrawal, S. K., “Differential Flatness of a Class of n-DOF Planar Manipulators Driven by An Arbitrary Number of Cctuators,” Proceedings of the 2013 European Control Conference, July 2013, Zurich, Switzerland.CrossRefGoogle Scholar
17. Rudolph, J., Flatness Based Control of Distributed Parameter Systems, Examples and Computer Exercises from Various Technological Domains (Shaker Verlag, Aachen, 2003).Google Scholar
18. Sira-Ramirez, H. and Agrawal, S., Differentially Flat Systems (Marcel Dekker, New York, 2004).CrossRefGoogle Scholar
19. Rigatos, G. G., Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotcs and Industrial Engineering (Springer, 2011).CrossRefGoogle Scholar
20. Lévine, J., “On necessary and sufficient conditions for differential flatness,” Appl. Algebra Eng. Commun. Comput., Springer 22 (1), 4790 (2011).CrossRefGoogle Scholar
21. Fliess, M. and Mounier, H., “Tracking Control and π-Freeness of Infinite Dimensional Linear Systems,” In: Dynamical Systems, Control, Coding and Computer Vision (Picci, G. and Gilliam, D. S., eds.), vol. 258 (Birkhaüser, 1999) pp. 4168.Google Scholar
22. Villagra, J., d'Andrea-Novel, B., Mounier, H. and Pengov, M., “Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach,” IEEE Trans. Control Syst. Technol. 15, 554565 (2007).Google Scholar
23. Laroche, B., Martin, P. and Petit, N., Commande par platitude: Equations différentielles ordinaires et aux derivées partielles (Ecole Nationale Supérieure des Techniques Avancées, Paris, 2007).Google Scholar
24. Martin, Ph. and Rouchon, P., Systèmes plats: Planification et suivi des trajectoires, Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes, Mai (1999).Google Scholar
25. Bououden, S., Boutat, D., Zheng, G., Barbot, J. P. and Kratz, F., “A triangular canonical form for a class of 0-flat nonlinear systems,” Int. J. Control, Taylor and Francis 84 (2), 261269 (2011).Google Scholar
26. Rigatos, G., Siano, P. and Zervos, N., “PMSG Sensorless Control with the Use of the Derivative-Free Nonlinear Kalman Filter,” IEEE ICCEP 2013, IEEE International Conference on Clean Electrical Power, Alghero, Sardinia Italy, Jun. 2013.Google Scholar
27. Rigatos, G. G., “A derivative-free Kalman Filtering approach to state estimation-based control of nonlinear dynamical systems,” IEEE Trans. Ind. Electron. 59 (10), 39873997 (2012).Google Scholar
28. Rigatos, G. G., “Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles,” Robot. Auton. Syst. Elsevier, 2012.Google Scholar
29. Chen, W. H., Ballance, D. J., Gawthrop, P. J. and Reilly, J. O., “A nonlinear disturbance observer for robotic manipulators,” IEEE Trans. Ind. Electron. 47 (4), 932938 (2000).CrossRefGoogle Scholar
30. Cortesao, R., Park, J. and Khatib, O., “Real-time adaptive control for haptic telemanipulation with Kalman Active Observers,” IEEE Trans. Robot. 22 (5), 987999 (2005).Google Scholar
31. Cortesao, R., “On Kalman active observers,” J. Intell. Robot. Syst., Springer 48 (2), 131155 (2006).Google Scholar
32. Gupta, A. and Malley, M. K. O., “Disturbance-observer-based force estimation for haptic feedback,” ASME J. Dyn. Syst. Meas. Control 133 (1), article no, 014505 (2011).Google Scholar
33. Ohnishi, K., “Disturbance observation - Cancellation technique,” In: Control and Mechatronics (Wilamowski, B. M. and Irwin, J. D., eds.) (CRC Press, 2010).Google Scholar
34. Miklosovic, R., Radke, A. and Gao, Z., “Discrete Implementation and Generalization of the Extended State Observer,” Proceedings of the 2006 Americal Control Conference, Minneapolis, Minnesota, USA, 2006.Google Scholar
35. Rigatos, G., Nonlinear Control and Filtering using Differential Flatness Approaches: Applications to Electromechanical Systems (Springer, 2015).Google Scholar
36. Khalil, H. K., Nonlinear Systems, 2nd ed. (Prentice Hall, 1996).Google Scholar
37. Harris, C., Hong, X. and Gan, Q., Adaptive Modelling, Estimation and Fusion From Data (Springer, 2002).CrossRefGoogle Scholar
38. Basseville, M. and Nikiforov, I., Detection of Abrupt Changes: Theory and Applications (Prentice-Hall, 1993).Google Scholar
39. Rigatos, G. and Zhang, Q., Fuzzy Model Validation using the Local Statistical Approach (Publication Interne IRISA No 1417, Rennes, France, 2001).Google Scholar
40. Kamen, E. W. and Su, J. K., Introduction to Optimal Estimation (Springer, 1999).CrossRefGoogle Scholar
41. Toussaint, G. J., Basar, T. and Bullo, F., “H Optimal Tracking Control Techniques for Nonlinear Underactuated Systems,” Proceedings of the IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney Australia (Dec. 2000).Google Scholar