Skip to main content Accessibility help
×
Home

Contour tracking of an unknown planar object by regulating force for mobile robot navigation

  • Seul Jung (a1), Poongwoo Jeon (a1) and T. C. Hsia (a2)

Summary

In this paper, a novel contour-tracking control method of an unknown planar object by lateral force regulation for wheeled mobile robot navigation is presented. The robot is required to follow the contour of an unknown object toward the goal position. Based on mobile robot dynamic equations, a force-control algorithm is proposed to maintain constant contact with a planar object. Measured contact force from an object is used not only to regulate a contact force in a lateral direction, but also to control the orientation angle of the robot to avoid collision with an object. Simulation and experiment of contour-tracking tasks of a wheeled mobile robot are conducted. Experimental results show that the contact force is well-regulated, and the robot arrives at the goal position successfully.

Copyright

Corresponding author

*Corresponding author. E-mail: jungs@cnu.ac.kr

References

Hide All
1.Borenstein, J., “Experimental evaluation of a fiber optic gyroscope for improving dead-reckoning accuracy in mobile robots,” Proceedings of the IEEE Conference on Robotics and Automation 1998 pp. 3456–3461.
2.Jetto, L., Longhi, S. and Venturini, G., “Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots,” IEEE Trans. Robot. Autom. 15 (2), 219229 (Apr. 1999).
3.Larsen, T. D., Hansen, K. L., Anderson, N. A. and Ravn, O., “Design of Kalman filters for mobile robots; evaluation of the kinematics and odometric approach,” Proceedings of the IEEE Conference on Control Applications, Piscataway, NJ 1999 pp. 1021–1026.
4.Tsai, C. C., “A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements,” Proceedings of the IEEE Conference on Instrumentation and Measurement Technology, Minnesota (May 18–21, 1998) pp. 144–149.
5.Jang, P. S., Jang, E. S., Jeon, S. W. and Jung, S., “Neural network based guidance control of a mobile robot,” Proceedings of the International Conference on Control, Automations and Systems 2003 pp. 1099–1104.
6.Sarkar, N., Yun, X., and Kumar, V., “Control of mechanical systems with rolling constraints: Application to dynamic control of mobile robots,” Int. J. Robot. Res. 31, 5569 1994.
7.Komanovsky, I. and McClamroch, N. H., “Developments in non-hononomic control problems,” IEEE Control Syst. Mag. 15 (6), 2036 1995.
8.Jang, Z. P. and Nijmeijer, H., “Tracking control of mobile robots: A case study in backstepping,” Automatica 33 (7), 13931399 1997.
9.Wu, W., Chen, H. and Wang, Y., “Backstepping design for path tracking of mobile robots,” Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 1999 pp. 1822–1827.
10.Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T., “A stable tracking control method for a non-holonomic mobile robot,” Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, IROS 1991 pp. 1236–1241.
11.Kanayama, Y. and Fahroo, F., “A new line tracking method for non-holonomic vehicles,” Proceedings of the IEEE Conference on Robotics and Automations 1997 pp. 2908–2913.
12.Chung, Y., Park, C. and Harashima, F., “A position control differential drive wheeled mobile robot,” IEEE Trans. Ind. Electron. 48 (4), 853863 2001.
13.Hogan, N., “Impedance control: An approach to manipulator, part i, ii, iii,” ASME J. Dyn. Syst. Meas. Control 3, 124 1985.
14.Raibert, M. and Craig, J., “Hybrid position/force control of manipulators,” ASME J. Dyn. Syst. Meas. Control 102, 126133 1981.
15.Anderson, R. and Spong, M. W., “Hybrid impedance control of robotic manipulators,” Proceedings of the IEEE Conference on Robotics and Automation 1987 pp. 1073–1080.
16.Liu, G. J. and Goldenberg, A. A., “Robust hybrid impedance control of robot manipulators,” Proceedings of the IEEE Conference on Robotics and Automation 1991 pp. 287–292.
17.Colbaugh, R., Seraji, H. and Glass, K., “Direct adaptive impedance control of robot manipulators,” J. Robot. Syst. 10, 217248 1993.
18.Jung, S. and Hsia, T. C., “Robust neural force control scheme under uncertainties in robot dynamics and unknown environment,” IEEE Trans. Ind. Electron. 47 (2), 403412 2000.
19.Byrne, R. H., Abdallah, C. T., and Dorato, P., “Experimental results in robust lateral control of highway vehicles,” IEEE Control Syst. Mag. 70–76 1997.
20.Fritz, H., “Longitudinal and lateral control of heavy duty trucks for automated vehicle following in mixed traffic: Experimental results from the CHAUFFEUR project,” Proceedings of the IEEE Conference on Control Applications 1999 pp. 1348–1352.
21.Cai, L., Rad, A. B. and Cai, K. Y., “A robust fuzzy PD controller for automatic steering control of autonomous vehicles,” Proceedings of the IEEE Conference on Fuzzy Systems 2003 pp. 549–554.

Keywords

Related content

Powered by UNSILO

Contour tracking of an unknown planar object by regulating force for mobile robot navigation

  • Seul Jung (a1), Poongwoo Jeon (a1) and T. C. Hsia (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.