Skip to main content Accessibility help
×
Home

Constrained cyclic coordinate descent for cryo-EM images at medium resolutions: beyond the protein loop closure problem

  • Kamal Al Nasr (a1) and Jing He (a2)

Summary

The cyclic coordinate descent (CCD) method is a popular loop closure method in protein structure modeling. It is a robotics algorithm originally developed for inverse kinematic applications. We demonstrate an effective method of building the backbone of protein structure models using the principle of CCD and a guiding trace. For medium-resolution 3-dimensional (3D) images derived using cryo-electron microscopy (cryo-EM), it is possible to obtain guiding traces of secondary structures and their skeleton connections. Our new method, constrained cyclic coordinate descent (CCCD), builds α-helices, β-strands, and loops quickly and fairly accurately along predefined traces. We show that it is possible to build the entire backbone of a protein fairly accurately when the guiding traces are accurate. In a test of 10 proteins, the models constructed using CCCD show an average of 3.91 Å of backbone root mean square deviation (RMSD). When the CCCD method is incorporated in a simulated annealing framework to sample possible shift, translation, and rotation freedom, the models built with the true topology were ranked high on the list, with an average backbone RMSD100 of 3.76 Å. CCCD is an effective method for modeling atomic structures after secondary structure traces and skeletons are extracted from 3D cryo-EM images.

Copyright

Corresponding author

*Corresponding author. E-mail: jhe@cs.odu.edu

References

Hide All
1. Wang, C., Bradley, P. and Baker, D., “Protein-protein docking with backbone flexibility,” J. Mol. Biol. 373 (2), 503519 (2007).
2. Mandell, D. J., Coutsias, E. A. and Kortemme, T., “Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling,” Nature Methods 6 (8), 551552 (2009).
3. Liu, P., Zhu, F., Rassokhin, D. N. and Agrafiotis, D. K., “A self-organizing algorithm for modeling protein loops,” PLoS Comput. Biol. 5 (8), e1000478 (2009).
4. Canutescu, A. A. and Dunbrack, R. L. Jr., “Cyclic coordinate descent: A robotics algorithm for protein loop closure,” Protein Sci. 12 (5), 963972 (2003).
5. Kavraki, L. E., Svestka, P., Latombe, J. C. and Overmars, M. H., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom. 12 (4), 566580 (1996).
6. Dawen, X. and Amato, N. M., “A Kinematics-Based Probabilistic Roadmap Method for High DOF Closed Chain Systems,” Proceedings of the IEEE International Conference on. Robotics and Automation, 2004, New Orleans, LA. ICRA'04 2004. pp. 473–478.
7. Cortes, J., Simeon, T. and Laumond, J. P., “A Random Loop Generator for Planning the Motions of Closed Kinematic Chains using PRM Methods,” Proceedings of the IEEE International Conference on. Robotics and Automation, 2002. ICRA '02. Washington, DC, 2002. pp. 2141–2146.
8. Cortés, J., Siméon, T., Remaud-Siméon, M. and Tran, V., “Geometric algorithms for the conformational analysis of long protein loops,” J. Comput. Chem. 25 (7), 956967 (2004).
9. Yakey, J. H., LaValle, S. M. and Kavraki, L. E., “Randomized path planning for linkages with closed kinematic chains,” IEEE Trans. Robot. Autom. 17 (6), 951958 (2001).
10. Wedemeyer, W. J. and Scheraga, H. A., “Exact analytical loop closure in proteins using polynomial equations,” J. Comput. Chem. 20, 819844 (1999).
11. Shehu, A., Clementi, C. and Kavraki, L. E., “Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations,” Proteins: Struct., Functions, Bioinformatics 65 (1), 164179 (2006).
12. Coutsias, E. A., Seok, C., Jacobson, M. P. and Dill, K. A., “A kinematic view of loop closure,” J. Comput. Chem. 25, 510528 (2004).
13. Fine, R. M., Wang, H., Shenkin, P. S., Yarmush, D. L. and Levinthal, C., “Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations,” Proteins 1 (4), 342362 (1986).
14. Shenkin, P. S., Yarmush, D. L., Fine, R. M., Wang, H. J. and Levinthal, C., “Predicting antibody hypervariable loop conformation. 1. ensembles of random conformations for ring-like structure,” Biopolymers 26, 20532085 (1987).
15. Wang, L. T. and Chen, C. C., “A combined optimization method for solving the inverse kinematics problem of mechanical manipulators,” IEEE Trans. Robot. Autom. 7, 489499 (1991).
16. Ring, C. S., Kneller, D. G., Langridge, R. and Cohen, F. E., “Taxonomy and conformational analysis of loops in proteins,” J. Mol. Biol. 224, 685699 (1992).
17. Xiang, Z., Soto, C. S. and Honig, B., “Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction,” Proc. Natl. Acad. Sci. USA (PNAS) 99 (11), 74327437 (2002).
18. Chen, D. H., Ludtke, S. J., Song, J. L., Chuang, D. T., and Chiu, W., “Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy,” Structure 12 (7), 11291136 (2004).
19. Chiu, W. and Schmid, M. F., “Pushing back the limits of electron cryomicroscopy,” Nature Struct. Biol. 4, 331333 (1997).
20. Chiu, W., Baker, M. L., Jiang, W. and Zhou, Z. H., “Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches,” Curr. Opin. Struct. Biol. 12 (2), 263269 (2002).
21. Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J. and Chiu, W., “Seeing the herpesvirus capsid at 8.5 A,” Science 288(5467), 877880 (2000).
22. Zhang, X., Jin, L., Fang, Q., Hui, W. H. and Zhou, Z. H., “3.3 Å Cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry,” Cell 141 (3), 472482 (2010).
23. Cheng, L., Sun, J., Zhang, K., Mou, Z., Huang, X., Ji, G., Sun, F., Zhang, J. and Zhu, P., “Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping,” Proc. Natl. Acad. Sci. 108 (4), 13731378 (2011).
24. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. and Walz, T., “Aquaporin-0 membrane junctions reveal the structure of a closed water pore,” Nature 429(6988), 193197 (2004).
25. Brown, A., Amunts, A., Bai, X.-C., Sugimoto, Y., Edwards, P. C., Murshudov, G., Scheres, S. H. W. and Ramakrishnan, V., “Structure of the large ribosomal subunit from human mitochondria,” Science 346(6210), 718722 (2014).
26. Hussain, T., Llácer, J. L., Fernández, I. S., Munoz, A., Martin-Marcos, P., Savva, C. G., Lorsch, J. R., Hinnebusch, A. G. and Ramakrishnan, V., “Structural changes enable start codon recognition by the eukaryotic translation initiation complex,” Cell 159 (3), 597607 (2014).
27. Lawson, C. L., Baker, M. L., Best, C., Bi, C., Dougherty, M., Feng, P., van Ginkel, G., Devkota, B., Lagerstedt, I., Ludtke, S. J., Newman, R. H., Oldfield, T. J., Rees, I., Sahni, G., Sala, R., Velankar, S., Warren, J., Westbrook, J. D., Henrick, K., Kleywegt, G. J., Berman, H. M. and Chiu, W., “EMDataBank.org: unified data resource for CryoEM,” Nucleic Acids Res. 39(Database issue), D456–464 (2011).
28. Pintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W. and Gossard, D. C., “Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions,” J. Struct. Biol. 170 (3), 427438 (2010).
29. Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W. and Sali, A., “Protein structure fitting and refinement guided by cryo-EM density,” Structure 16 (2), 295307 (2008).
30. Tama, F., Miyashita, O. and Brooks, C. L., “Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM,” J. Struct. Biol. 147 (3), 315326 (2004).
31. Pandurangan, A. P. and Topf, M., “Finding rigid bodies in protein structures: Application to flexible fitting into cryoEM maps,” J. Struct. Biol. 177 (2), 520531 (2012).
32. Suhre, K., Navazab, J. and Sanejouand, Y.-H., “NORMA: A tool for flexible fitting of high-resolution protein structures into low-resolution electron-microscopy-derived density maps,” Acta Crystallogr.. Section D, Biol. Crystallogr. 62 (Pt 9), 10981100 (2006).
33. Velazquez-Muriel, J. A. and Carazo, J. M., “Flexible fitting in 3D-EM with incomplete data on superfamily variability,” J. Struct. Biol. 158 (2), 165181 (2007).
34. Chacón, P. and Wriggers, W., “Multi-resolution contour-based fitting of macromolecular structures,” J. Mol. Biol. 317 (3), 375384 (2002).
35. Wriggers, W. and Birmanns, S., “Using situs for flexible and rigid-body fitting of multiresolution single-molecule data,” J. Struct. Biol. 133 (2–3), 193202 (2001).
36. Wriggers, W., “Using Situs for the integration of multi-resolution structures,” Biophys. Rev. 2 (1), 2127 (2010).
37. Topf, M., Baker, M. L., Marti-Renom, M. A., Chiu, W. and Sali, A., “Refinement of protein structures by iterative comparative modeling and CryoEM density fitting,” J. Mol. Biol. 357 (5), 16551668 (2006).
38. Baker, M. L., Ju, T. and Chiu, W., “Identification of secondary structure elements in intermediate-resolution density maps,” Structure 15 (1), 719 (2007).
39. Si, D. and He, J., “Tracing beta strands using strandTwister from Cryo-EM density maps at medium resolutions,” Structure 22 (11), 16651676 (2014).
40. Si, D., Ji, S., Al Nasr, K. and He, J., “A machine learning approach for the identification of protein secondary structure elements from cryoEM density maps,” Biopolymers 97, 698708 (2012).
41. Baker, M. L., Abeysinghe, S. S., Schuh, S., Coleman, R. A., Abrams, A., Marsh, M. P., Hryc, C. F., Ruths, T., Chiu, W. and Ju, T., “Modeling protein structure at near atomic resolutions with Gorgon,” J. Struct. Biol. 174 (2), 360373 (2011).
42. Al Nasr, K., Ranjan, D., Zubair, M. and He, J., “Ranking valid topologies of the secondary structure elements using a constraint graph,” J. Bioinformatics Comput. Biol. 9 (3), 415430 (2011).
43. Al Nasr, K., Ranjan, D., Zubair, M., Chen, L. and He, J., “Solving the secondary structure matching problem in Cryo-EM De novo modeling using a constrained K-Shortest path graph algorithm,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, 11 (2), 419430 (2014).
44. Ju, T., Baker, M. L. and Chiu, W., “Computing a family of skeletons of volumetric models for shape description,” Comput.-Aided Des. 39 (5), 352360 (2007).
45. Biswas, A., Si, D., Al Nasr, K., Ranjan, D., Zubair, M. and He, J., “Improved efficiency in Cryo-EM secondasy structure topology determination from inaccurate data,” J. Bioinformatics Comput. Biol. 10 (03), 1242006 (2012).
46. Biswas, A., Ranjan, D., Zubair, M. and He, J., “A dynamic programming algorithm for finding the optimal placement of a secondary structure topology in Cryo-EM data,” J. Comput. Biol., (2015).
47. Biswas, A., Ranjan, D., Zubair, M. and He, J., “A novel computational method for deriving protein secondary structure topologies using Cryo-EM density maps and multiple secondary structure predictions,” LNCS, Bioinformatics Res. Appl., 9096, 6071 (2015).
48. Al Nasr, K., Chen, L., Si, D., Ranjan, D., Zubair, M. and He, J., “Building the Initial Chain of the Proteins Through de novo Modeling of the Cryo-Electron Microscopy Volume Data at the Medium Resolutions,” Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, Orlando, Florida, (2012) pp. 490–497.
49. Jiang, W., Baker, M. L., Ludtke, S. J. and Chiu, W., “Bridging the information gap: Computational tools for intermediate resolution structure interpretation,” J. Mol. Biol. 308 (5), 10331044 (2001).
50. Dal Palu, A., He, J., Pontelli, E. and Lu, Y., “Identification of Alpha-Helices from Low Resolution Protein Density Maps,” Proceeding of the Computational Systems Bioinformatics Conference(CSB), Stanford University, CA (2006) pp. 89–98.
51. Rusu, M. and Wriggers, W., “Evolutionary bidirectional expansion for the tracing of alpha helices in cryo-electron microscopy reconstructions,” J. Struct. Biol. 177 (2), 410419 (2012).
52. Kong, Y. and Ma, J., “A structural-informatics approach for mining beta-sheets: Locating sheets in intermediate-resolution density maps,” J. Mol. Biol. 332 (2), 399413 (2003).
53. Kong, Y., Zhang, X., Baker, T. S. and Ma, J., “A Structural-informatics approach for tracing beta-sheets: Building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps,” J. Mol. Biol. 339 (1), 117130 (2004).
54. Bajaj, C., Goswami, S. and Zhang, Q., “Detection of secondary and supersecondary structures of proteins from cryo-electron microscopy,” J. Struct. Biol. 177 (2), 367381 (2012).
55. Si, D. and He, J., “Beta-sheet Detection and Representation from Medium Resolution Cryo-EM Density Maps,” BCB'13: Proceedings of ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, D.C. (Sep. 22–25, 2013) pp. 764–770.
56. Abeysinghe, S. S., Baker, M., Wah, C. and Tao, J., “Segmentation-Free Skeletonization of Grayscale Volumes for Shape Understanding,” IEEE International Conference on Shape Modeling and Applications, SMI, Stony Brook, NY (2008) pp. 63–71.
57. Al Nasr, K., Liu, C., Rwebangira, M., Burge, L. and He, J., “Intensity-based Skeletonization of CryoEM gray-scale images using a true segmentation-free algorithm,” IEEE/ACM Trans. Comput. Biol. Bioinformatics 10 (5), 12891298 (2013).
58. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. and Barton, G. J., “JPred: A consensus secondary structure prediction server,” Bioinformatics 14 (10), 892893 (1998).
59. Pollastri, G. and McLysaght, A., “Porter: A new, accurate server for protein secondary structure prediction,” Bioinformatics 21 (8), 17191720 (2005).
60. Jones, D. T., “Protein secondary structure prediction based on position-specific scoring matrices,” J. Mol. Biol. 292 (2), 195202 (1999).
61. Abeysinghe, S., Ju, T., Baker, M. L. and Chiu, W., “Shape modeling and matching in identifying 3D protein structures,” Comput.-Aided Des. 40 (6), 708720 (2008).
62. Ginalski, K., “Comparative modeling for protein structure prediction,” Curr. Opin. Struct. Biol. 16 (2), 172177 (2006).
63. Fiser, A. and Šali, A., “Modeller: Generation and refinement of homology-based protein structure models,” Methods Enzymology 374, 461491 (2003).
64. Simons, K. T., Kooperberg, C., Huang, E. and Baker, D., “Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions,” J. Mol. Biol. 268 (1), 209225 (1997).
65. Rohl, C. A., Strauss, C. E., Misura, K. M. and Baker, D., “Protein structure prediction using Rosetta,” Methods Enzymol 383, 6693 (2004).
66. Lindert, S., Alexander, N., Wötzel, N., Karaka, M., Stewart, Phoebe L. and Meiler, J., “EM-Fold: De novo atomic-detail protein structure determination from medium-resolution density maps,” Structure 20 (3), 464478 (2012).
67. Lindert, S., Staritzbichler, R., Wötzel, N., Karakas, M., Stewart, P. L. and Meiler, J., “EM-fold: De novo folding of alpha-helical proteins guided by intermediate-resolution electron microscopy density maps,” Structure 17 (7), 9901003 (2009).
68. Baker, M. R., Rees, I., Ludtke, S. J., Chiu, W. and Baker, M. L., “Constructing and validating initial Cα models from ubnanometer resolution density maps with Pathwalking,” Structure 20 (3), 450463 (2012).
69. Lotan, I., Van Den Bedem, H., Deacon, A. M. and Latombe, J.-C., “Computing protein structures from electron density maps: The missing fragment problem algorithmic foundations of robotics VI,” Springer Tracts Adv. Robot. 17, 345360 (2005).
70. Lu, Y., He, J., and Strauss, C. E., “Deriving Topology and Sequence Alignment for the Helix Skeleton in Low Resolution Protein Density Maps,” J Bioinformatics Comput. Biol., 6 (1), 183201 (2008).
71. Al Nasr, K. and He, J., “An effective convergence independent loop closure method using forward-backward cyclic coordinate descent,” Int. J. Data Mining Bioinformatics 3 (3), 346361 (2009).
72. Al Nasr, K. and He, J., “Deriving protein backbone using traces extracted from density maps at medium resolutions,” LNCS, Bioinformatics Res. Appl., 9096, 111 (2015).
73. Ludtke, S. J., Baldwin, P. R. and Chiu, W., “EMAN: Semi-automated software for high resolution single particle reconstructions,” J. Struct. Biol. 128 (1), 8297 (1999).
74. Xie, W. and Sahinidis, N. V., “Residue-rotamer-reduction algorithm for the protein side-chain conformation problem,” Bioinformatics 22 (2), 188194 (2006).
75. Sun, W. and He, J., “Native secondary structure topology has near minimum contact energy among all possible geometrically constrained topologies,” Proteins 77 (1), 159173 (2009).
76. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E., “UCSF Chimera–-A visualization system for exploratory research and analysis,” J. Comput. Chem. 25 (13), 16051612 (2004).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed