Skip to main content Accessibility help
×
Home

Article contents

Orientation workspace analysis of a special class of the Stewart–Gough parallel manipulators

Published online by Cambridge University Press:  15 January 2010


Yi Cao
Affiliation:
School of Mechanical Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
Zhen Huang
Affiliation:
Robotics Research Center, Yanshan University, Qinghuangdao, Hebei 066004, P.R. China.
Hui Zhou
Affiliation:
School of Mechanical Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
Weixi Ji
Affiliation:
School of Mechanical Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
Corresponding

Summary

The workspace of a robotic manipulator is a very important issue and design criteria in the context of optimum design of robots, especially for parallel manipulators. Though, considerable research has been paid to the investigations of the three-dimensional (3D) constant orientation workspace or position workspace of parallel manipulators, very few works exist on the topic of the 3D orientation workspace, especially the nonsingular orientation workspace and practical orientation workspace. This paper addresses the orientation workspace analysis of a special class of the Stewart–Gough parallel manipulators in which the moving and base platforms are two similar semisymmetrical hexagons. Based on the half-angle transformation, a polynomial expression of 13 degree that represents the orientation singularity locus of this special class of the Stewart–Gough parallel manipulators at a fixed position is derived and graphical representations of the orientation singularity locus of this special class of the Stewart–Gough manipulators are illustrated with examples to demonstrate the result. Exploiting this half-angle transformation and the inverse kinematics solution of this special class of the Stewart–Gough parallel manipulators, a discretization method is proposed for computing the orientation workspace of this special class of the Stewart–Gough parallel manipulators taking limitations of active and passive joints and the link interference all into consideration. Based on this algorithm, this paper also presents a new discretization method for computing the nonsingular orientation workspace of this class of the manipulators, which not only can satisfy all the kinematics demand of this class of the manipulators but also can guarantee the manipulator is nonsingular in the whole orientation workspace, and the practical orientation workspace of this class of the manipulators, which not only can guarantee the manipulator is nonsingular and will never encounter any kinematic interference but also can satisfy the demand of the orientation workspace with a regular shape in practical application, respectively. Examples of a 6/6-SPS Stewart–Gough parallel manipulator of this special class are given to demonstrate these theoretical results.


Type
Article
Information
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Stewart, D., “A Platform with Six Degrees of Freedom,” Proceedings of the Institution of Mechanical Engineers (1965) 180 (5) pp. 371378.CrossRefGoogle Scholar
2.Gough, V. E., “Contribution to Discussion to Papers on Research in Automobile Stability and Control and in Type Performance,” Proceedings of the Automobile Division Institution of mechanical Engineers (1957) pp. 392–395.Google Scholar
3.Gosselin, C. M. and Angeles, J., “The optimum kinematic design of a spherical three-DOF parallel manipulator,” J. Mech. Transm. Autom. Des. 111, 202207 (1989).CrossRefGoogle Scholar
4.Gosselin, C. M., “Determination of the workspace of six-DOF parallel manipulator,” J. Mech. Des. 112, 331336 (1990).CrossRefGoogle Scholar
5.Tahmasebi, F. and Tsai, L.-W., “Workspace and singularity analysis of a novel six-DOF parallel manipulator,” J. Appl. Mech. Robot. 1 (2), 3140 (1994).Google Scholar
6.Masory, O. and Wang, J., “Workspace evaluation of Stewart platform,” Adv. Robot. 9 (4), 443461 (1995).CrossRefGoogle Scholar
7.Bulca, F., Angeles, J. and Zsombor-Murray, P. J., “On the workspace determination of spherical serial and platform mechanisms,” Mech. Mach. Theory 34 (4), 497512 (1999).CrossRefGoogle Scholar
8.Majid, M. Z. A., Huang, Z. and Yao, Y. L., “Workspace analysis of a six-degree of freedom, three-prismatic-spheroid- revolute parallel manipulator,” Int. J Adv. Manuf. Technol. 16, 441449 (2000).CrossRefGoogle Scholar
9.Bonev, I. A. and Ryu, J., “A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators,” Mech. Mach. Theory 36 (1), 113 (2001).CrossRefGoogle Scholar
10.Koteswara Rao, A. B., Rao, P. V. M. and Saha, S. K., “Workspace and Dexterity Analyses of Hexaslide Machine Tools,” Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan (2003) pp. 41044109.Google Scholar
11.Gregorio, R. D. and Zanforlin, R., “Workspace analytic determination of two similar translational parallel manipulators,” Robotica 21, 555566 (2003).CrossRefGoogle Scholar
12.Pusey, J., Fattah, A., Agrawal, S. and Messina, E., “Design and workspace analysis of a 6–6 cable-suspended parallel robot,” Mech. Mach. Theory 39 (5), 761778 (2004).CrossRefGoogle Scholar
13.Zhao, J. S., Feng, Z. J. and Zhou, K., “On the workspace of spatial parallel manipulator with multi-translational degrees of freedom,” Int. J. Adv. Manuf. Technol. 27, 112118 (2005).CrossRefGoogle Scholar
14.Pernkopf, F. and Husty, M. L., “Workspace analysis of Stewart–Gough-type parallel manipulators,” Proc. IMECHE C: J. Mech. Eng. Sci. 220 (7), 10191032 (2006).Google Scholar
15.Li, H. D., Gosselin, C. M. and Richard, M. J., “Determination of maximal singularity-free zones in the workspace of planar three-degree-of-freedom parallel mechanisms,” Mech. Mach. Theory 41 (10), 11571167 (2006).CrossRefGoogle Scholar
16.Li, H. D., Gosselin, C. M. and Richard, M. J., “Determination of the maximal singularity-free zones in the six- dimensional workspace of the general Gough–Stewart platform,” Mech. Mach. Theory 42 (4), 497511 (2007).CrossRefGoogle Scholar
17.Merlet, J. P., Parallel Robots (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000).CrossRefGoogle Scholar
18.Bonev, I. A. and Ryu, J., “A new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mech. Mach. Theory 36 (1), 1528 (2001).CrossRefGoogle Scholar
19.Pernkopf, F. and Husty, M. L., “Workspace Analysis of Stewart–Gough Manipulators using Orientation Plots,” Proceedings of MUSME 2002, the International Symposium on Multibody Systems and Mechatronics/M33, Mexico City (2002) pp. 315330.Google Scholar
20.Yang, G. L. and Chen, I. M., “Equivolumetric partition of solid spheres with applications to orientation workspace analysis of robot manipulators,” IEEE Trans. Robot. Autom. 22 (5), 869879 (2006).CrossRefGoogle Scholar
21.Hwang, Y. K., Yoon, J. W. and Ryu, J. H., “The Optimum Design of a 6-DOF Parallel Manipulator with Large Orientation Workspace,” Proceedings IEEE International Conference on Robotics and Automation, Roma, Italy (2007) pp. 163168.Google Scholar
22.Jiang, Q. M. and Gosselin, C. M., “Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform,” Mech. Mach. Theory 44 (6), 12811293 (2009).CrossRefGoogle Scholar
23.Huang, Z., Kong, L. F. and Fang, Y. F., Theory and control of parallel robotic mechanisms manipulator (Publisher of Mechanical Industry, Beijing, China, 1997).Google Scholar
24.Huang, Z., Zhao, Y. S., Wang, J. and Yu, J. J., “Kinematic principle and geometrical condition of general-linear-complex-special-configuration of parallel manipulators,” Mech. Mach. Theory 34 (8), 11711186 (1999).CrossRefGoogle Scholar
25.Gosselin, C. M. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom. 6 (3), 281290 (1990).CrossRefGoogle Scholar
26.St-Onge, B. M. and Gosselin, C. M., “Singularity analysis and representation of the general Gough–Stewart platform,” Int. J. Robot. Res. 19 (3), 271288 (2000).CrossRefGoogle Scholar
27.Cao, Y. and Huang, Z., “Property Identification of the Singularity Loci of the Stewart Manipulator,” The Tenth IASTED on Robotics and Application 2004/RA 447-017, Honolulu, HI (2004) pp. 59.Google Scholar
28.Cao, Y. and Huang, Z., “Property identification of the singularity loci of a class of Gough–Stewart manipulators,” Int. J. Robot. Res. 24 (8), 675685 (2005).Google Scholar
29.Pernkopf, F. and Husty, M. L., “Singularity-analysis of spatial Stewart–Gough platforms with planar base and platform,” ASME DETC 2002/MECH-34267, Montreal, Canada (2002) pp. 593600.Google Scholar
30.Cao, Y., Huang, Z. and Ge, Q. J., “Orientation-singularity and orientation capability analyses of the Stewart–Gough manipulator,” Proceedings of ASME DETC 2005/MECH-84556, California, CA (2005) pp. 10091015.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 40 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th November 2020. This data will be updated every 24 hours.

Hostname: page-component-5cf9899667-6xt8z Total loading time: 0.432 Render date: 2020-11-26T15:28:07.512Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Nov 26 2020 14:28:47 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Orientation workspace analysis of a special class of the Stewart–Gough parallel manipulators
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Orientation workspace analysis of a special class of the Stewart–Gough parallel manipulators
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Orientation workspace analysis of a special class of the Stewart–Gough parallel manipulators
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *