Skip to main content Accessibility help

Failing to adapt – the ageing immune system's role in cancer pathogenesis

  • Christopher M Jones (a1)


A person's risk of developing cancer rises exponentially with age, an increase that is widely considered to result from cumulative exposure to mutagenic agents. However, cancer incidence rates decelerate and plateau beyond 85 years of age and numerous malignant pathologies peak in incidence during early or middle life, indicating an important role for additional factors in controlling the timing and nature of cancer development. Given that immune function is known to decrease with age, malignant neoplastic change may be induced by increased chronic infection and the onset of a pervasive low grade inflammatory environment. This article discusses in detail the ageing immune system's role in cancer pathogenesis and demonstrates that key polymorphisms coding for relatively low pro-inflammatory cytokine production act to protect some populations from age-induced neoplastic transformation.


Corresponding author

Address for correspondence: Christopher Jones, School of Clinical & Experimental Medicine, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT. Email:


Hide All
1Office for National Statistics. Registrations of cancer diagnosed in 2006, England. Series MB1, No. 37. London: Office for National Statistics, 2008.
2Information Services Division, Scotland. Cancer in Scotland. Information Services Division, NHS National Services Scotland, 2010. Available at: (accessed 22 December 2010).
3Welsh Cancer Intelligence and Surveillance Unit. WCISU Annual Publication No. SA9/01Cancer Incidence in Wales 2003–2007. Available at: (accessed 22 December 2010).
4Donnelly, DW, Gavin, AT, Comber, H. Cancer in Ireland: A summary report. Northern Ireland Cancer Registry/National Cancer Registry, Ireland; 2009.
5Arbeev, KG, Ukraintseva, SV, Arbeeva, LS, Yashin, AI. Decline in human cancer incident rates at old ages: Age-period-cohort considerations. Demographic Res 2005; 12: 273300.
6Ferlay, J. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007; 18: 581–92.
7Troen, BR. The biology of aging. Mt Sinai J Med 2003; 70: 322.
8Sarkar, D, Fisher, PB. Molecular mechanisms of ageing-associated inflammation. Cancer Lett 2006; 236: 1323.
9Miyaishi, O, Ando, F, Matsuzawa, K, Kanawa, R, Isobe, K. Cancer incidence in old age. Mech Ageing Dev 2000; 117: 4755.
10Krontiris, TG. The emerging genetics of human cancer. N Engl J Med 1983; 309: 404–9.
11Hoeijmakers, JHJ. DNA damage, aging and cancer. N Engl J Med 2009; 361: 1475–85.
12Kuperwasser, C, Chavarria, T, Wu, M, Magrane, G, Gray, JW, Carey, L, Richardson, A, Weinberg, RA. Reconstruction of functionally normal and malignant human breast titssues in mice. Proc Natl Acad Sci USA 2004; 101: 4966–71.
13Bissell, MJ, Rizki, A, Mian, SI. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 2003; 15: 753–82.
14Schwartsburd, PM. Age-promoted creation of a pro-cancer microenvironment by inflammation: pathogenesis of dyscoordinated feedback control. Mech Ageing Dev 2004; 125: 581–90.
15Braakhuis, BJM, Tabor, MP, Kummer, JA, Leemans, CR, Brakenhoff, RH. A genetic explanation of Slaughter's concept of field cancerisation: evidence and clinical implications. Cancer Res 2003; 63: 1727–30.
16Liotta, LA, Kohn, E. The microenvironment of the tumour-host interface. Nature 2001; 411: 375–79.
17Hall, AJ, Yee, LJ, Thomas, SL. Life course epidemiology and infectious diseases. Int J Epidemiol 2002; 31: 300–1.
18Coussens, LM, Werb, Z. Inflammation and cancer. Nature 2002; 420: 860–67.
19Ginaldi, L, De Martinis, M, D'Ostilio, A, Marini, L, Loreto, MF, Corsi, MP, Quaglino, D. The immune system in the elderly: I – Specific humoral immunity. Immunol Res 1999; 20: 101–8.
20Ginaldi, L, De Martinis, M, D'Ostilio, A, Marini, L, Loreto, MF, Martorelli, V, Quaglino, D. The immune system in the elderly: II – Specific cellular immunity. Immunol Res 1999; 20: 109–15.
21Gavazzi, G, Krause, KH. Ageing and infection. Lancet Infect Dis 2002; 2: 659–66.
22Fein, AM. Pneumonia in the elderly: overview of diagnostic and therapeutic approaches. Clin Infect Dis 1999; 28: 726–29.
23Reacher, MH, Shah, A, Livermore, DM, Wale, MC, Graham, C, Johnson, AP, Heine, H, Monnickendam, MA, Barker, KF, James, D, George, RC. Bacteraemia and antibiotic resistance of its pathogens reported in England and Wales between 1990 and 1998: trend analysis. BMJ 2000; 320: 213–16.
24Dhawan, VK. Infective endocarditis in elderly patients. Clin Infect Dis 2002; 34: 806–12.
25Choi, C. Bacterial meningitis in ageing adults. Clin Infect Dis 2001; 33: 1380–85.
26Bruunsgaard, H, Pedersen, M, Pedersen, BK. Aging and proinflammatory cytokines. Curr Opin Haematol 2001; 8: 131–36.
27Franceschi, C, Bonafè, M, Valensin, S, Olivieri, F, De Luca, M, Ottaviani, E, De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 2000; 908: 244–54.
28De Martinis, M, Franceschi, C, Monti, D, Ginaldi, L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 2005; 579: 2035–39.
29Chin, L, Artandi, SE, Shen, Q. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis.Cell 1999; 97: 527–38.
30Agrawal, A, Agrawal, S, Tay, J, Gupta, S. Biology of dendritic cells in aging. J Clin Immunol 2008; 43: 718–28.
31Araki, N, Johnson, MT, Swanson, JA. A role for phospoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 1996; 135: 1249–60.
32Clague, MJ, Thorpe, C, Jones, AT. Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 1995; 367: 272–74.
33Del Prete, A, Vermi, W, Dander, E, Otero, K, Barberis, L, Luini, W. Defective dendritic cell migration and activation of adaptive immunity in PI3K gamma-deficient mice. EMBO J 2004; 23: 3505–15.
34Della Bella, S, Bierti, L, Presicce, P, Arienti, R, Valenti, M, Saresella, M, Vergani, C, Villa, ML. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 2007; 122: 220–28.
35Potack, J, Itzkowitz, SH. Colorectal cancer in inflammatory bowel disease. Gut Liver 2008; 2: 6173.
36Michaud, DS. Chronic inflammation and bladder cancer. Urol Oncol 2007; 25: 260–68.
37Abdel-Latif, MMM, Duggan, S, Reynolds, JV, Kelleher, D. Inflammation and oesophageal carcinogenesis. Curr Opin Pharmacol 2009; 9: 396404.
38Sugar, LM. Inflammation and prostate cancer. Can J Urol 2006; 13 (suppl 1): 4647.
39Wilson, KT, Crabtree, JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 2007; 133: 288308.
40Correa, P, Houghton, J. Carcinogenesis of Helicobacter pylori. Rev Basic Clin Gastroenterol 2007; 133: 659–72.
41Gomez, CR, Nomellini, V, Faunce, DE, Kovacs, EJ. Innate immunity and aging. Exp Gerontol 2008; 43: 718–28.
42Gomez, CR, Hirano, S, Cutro, BT, Birjandi, S, Baila, H, Nomellini, V, Kovacs, EJ. Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care Med 2007; 35: 246–51.
43Swift, ME, Burns, AL, Gray, KL, DiPietro, LA. Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 2001; 117: 1027–35.
44Tortorella, C, Simone, O, Piazzolla, G, Stella, I, Cappiello, V, Antonaci, S. Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci 2006; 71: 1111–18.
45Fulop, T Jr, Larbi, A, Linteau, A, Desgeorges, S, Douziech, N. The role of Mcl-I and Bax expression alteration in the decreased rescue of human neutrophils from apoptosis by GM-CSF with aging. Ann NY Acad Sci 2002; 973: 305–8.
46Fortin, CF, Larbi, A, Dupuis, G, Lesur, O, Fulop, T Jr. GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology 2007; 8: 173–87.
47Butcher, SK, Chahal, H, Nayak, L, Sinclair, A, Henriquez, NV, Sapey, E, O'Mahony, D, Lord, JM. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 2001; 70: 881–86.
48Fulop, T, Larbi, A, Douziech, N, Fortin, C, Guérard, KP, Lesur, O, Khalil, A, Dupuis, G. Signal transduction and functional changes in neutrophils with aging. Aging Cell 2004; 3: 217–26.
49Vignola, AM, Bonanno, A, Profita, M, Riccobono, L, Scichilone, N, Spatafora, M, Bousquet, J, Bonsignore, G, Bellia, V. Effect of age and asthma duration upon elastase and alpha1-antitrypsin levels in adult asthmatics. Eur Resp J 2003; 22: 795801.
50Braman, SS. Asthma in the elderly. Clin Geriatr Med 2003; 19: 5775.
51Leng, S, Xue, QL, Huang, Y, Semba, R, Chaves, P, Bandeen-Roche, K, Fried, L, Walston, J. Total and differential white blood cell counts and their associations with circulating interleukin-6 levels in community-dwelling older women. J Gerontol A Biol Sci Med Sci 2005; 60: 195–99.
52Gon, Y, Hashimoto, S, Hayashi, S, Koura, T, Matsumoto, K, Horie, T. Lower serum concentrations of cytokines in elderly patients with pneumonia and the impaired production of cytokines by peripheral blood monocytes in the elderly. Clin Exp Immunol 1996; 106: 120–26.
53Roubenoff, R, Harris, TB, Abad, LW, Wilson, PW, Dallal, GE, Dinarello, CA. Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol A Biol Sci Med Sci 1998; 53: M2026.
54Agius, E, Lacy, KE, Vukmanovic-Stejic, M, Jagger, AL, Papageorgiou, AP, Hall, S, Reed, JR, Curnow, SJ, Fuentes-Duculan, J, Buckley, CD, Salmon, M, Taams, LS, Krueger, J, Greenwood, J, Klein, N, Rustin, MH, Akbar, AN. Decreased TNF-α synthesis by macrophages restricts cutaenous immunosurveillance by memory CD4+ T cells during aging. J Exp Med 2009; 206: 1929–40.
55Mariani, E, Pulsatelli, L, Neri, S, Dolzani, P, Meneghetti, A, Silvestri, T, Ravaglia, G, Forti, P, Cattini, L, Facchini, A. RANTES and MIP-1alpha production by T lymphocytes, monocytes and NK cells from nonagenarian subjects. Exp Gerontol 2002; 37: 219–26.
56Sebastian, C, Espia, M, Serra, M, Celada, A, Lloberas, J. MacrophAging: a cellular and molecular review. Immunobiology 2005; 210: 121–26.
57Ligthart, GJ, van Blockhoben, PC, Schuit, HR, Hijmans, W. The expanded null cell compartment in ageing: increase in the number of natural killer cells and changes in T-cell and NK-cell subsets in human blood. Immunology 1986; 59: 353–57.
58Jamieson, BD, Douek, DC, Killian, S, Hultin, LE, Scripture-Adams, DD, Giorgi, JV, Marelli, D, Koup, RA, Zack, JA. Generation of functional thymocytes in the human adult. Immunity 1999; 10: 569–75.
59Steinmann, GG. Changes in the human thymus during aging. Curr Top Pathol 1986; 75: 4348.
60Czesnikiewicz-Guzik, M, Lee, WW, Cui, D, Hiruma, Y, Lamar, DL, Yang, ZZ, Ouslander, JG, Weyand, CM, Goronzy, JJ. T cell subset-specific susceptibility to aging. Clin Immunol 2008; 127: 107–18.
61Nikolich-Zugich, J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 2008; 8: 512–22.
62Lages, CS, Suffia, I, Velilla, PA, Huang, B, Warshaw, G, Hildeman, DA, Belkaid, Y, Chougnet, C. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 2008; 181: 1835–48.
63Dunn, GP, Burce, AT, Ikeda, H, Old, LJ, Schreiber, RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991–98.
64Krabbe, KS, Pedersen, M, Bruunsgaard, H. Inflammatory mediators in the elderly. Exp Gerontol 2004; 39: 687–99.
65Szlosarek, PW, Balkwill, FR. Tumor necrosis factor α: a potential target for the therapy of solid tumors. Lancet Oncol 2003; 4: 565–73.
66Bojarska-Junak, A, Rolinski, J, Wasik-Szczepaneko, E, Kaluzny, Z, Dmoszynska, A. Intracellular tumor necrosis factor production by T- and B-cells in B-cell chronic lymphocytic leukemia. Haematologica 2002; 87: 490–99.
67Ohba, T, Haro, H, Ando, T, Wako, M, Suenaga, F, Aso, Y, Koyama, K, Hamada, Y, Nakao, A. TNF-alpha-induced NF-kappaB signalling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues. J Orthop Res 2009; 27: 229–35.
68Russo, MP, Bennett, BL, Manning, AM, Brenner, DA, Jobin, C. Differential requirement for NF-kappa B-inducing kinase in the induction of NF-kappa B by IL-1beta, TNF-alpha, and FAS. Am J Physiol Cell Physiol 2002; 283: 347–57.
69Balkwill, F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 2002; 13: 135–41.
70Bruunsgaard, H, Andersen-Ranberg, K, Jeune, B, Pedersen, AN, Skinhoj, P, Pedersen, BK. A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 1999; 54A: M35764.
71Paolisso, G, Rizzo, MR, Mazziotti, G, Tagliamonte, MR, Gambardella, A, Rotondi, M, Carella, C, Giugliano, D, Varricchio, M, D'Onofrio, F. Advancing age and insulin resistance: role of plasma tumor necrosis factor-α. Am J Physiol 1998; 275: E29499.
72Bruunsgaard, H, Skinhoj, P, Qvist, J, Pedersen, BK. Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infections. J Infect Dis 1999; 180: 551–54.
73Vane, JR, Mitchell, JA, Appleton, I, Tomlinson, A, Bishop-Bailey, D, Croxtall, J, Willoughby, DA. Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc Natl Acad Sci USA 1994; 91: 2046–50.
74Landino, LM, Crews, BC, Timmons, MD, Morrow, JD, Marnett, LJ. Perioxynitrite, the coupling product of nitric oxide and superoxide activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 1996; 93: 15069–74.
75Fosslien, E. Review: Molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis. Ann Clin Lab Sci 2001; 31: 325–48.
76Thun, MJ, Henley, SJ, Patrono, C. Non-steroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic and clinical issues. J Natl Cancer Inst 2002; 94: 252–66.
77Vasto, S, Candore, G, Balistreri, CR et al. . Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 2007; 128: 8391.
78Lio, D, Scola, L, Crivello, A, Colonna-Romano, G, Candore, G, Bonafé, M, Cavallone, L, Marchegiani, F, Olivieri, F, Franceschi, C, Caruso, C. Inflammation, genetics and longevity: further studies on the protective effects in men of IL-10–1082 promoter SNP and its interaction with TNF-alpha-308 promoter SNP. J Med Genet 2003; 40: 296–99.
79Culig, Z, Steiner, H, Bartsch, G, Hobisch, A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biol 2005; 95: 497505.
80Hong, DS, Angelo, LS, Kurzrock, R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007; 110: 1911–28.
81Hutchins, D, Steel, CM. Regulation of ICAM-I (CD54) expression in human breast cancer cell lines by interleukin 6 and fibroblast-derived factors. Int J Cancer 1994; 58: 8084.
82Cohen, T, Nahari, D, Cerem, LW, Neufeld, G, Levi, BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736–41.
83Hefler, LA, Grimm, C, Ackermann, S, Malur, S, Radjabi-Rahat, AR, Leodolter, S, Beckmann, MW, Zeillinger, R, Koelbl, H, Tempfer, CB. An interleukin-6 gene promoter polymorphism influences the biological phenotype of ovarian cancer. Cancer Res 2003; 63: 8051–56.
84Heikkila, K, Ebrahim, S, Rumley, A, Lowe, G, Lawlor, DA. Associations of circulating C-reactive protein and interleukin-6 with survival in women with and without cancer: findings from the British Women's Heart and Health Study. Cancer Epidemiol Biomarkers Prev 2007; 16: 1155–59.
85Mysliwska, J, Bryl, E, Foerster, J, Mysliwski, A. Increase of interleukin-6 and decrease of interleukin-2 production during the ageing process are influenced by the health status. Mech Ageing Dev 1998; 100: 313–28.
86Mazhar, D, Ngan, S. C-reactive protein and colorectal cancer. QJM 2006; 99: 555–59.
87Balistreri, CR, Candore, G, Colonna-Romano, G, Lio, D, Caruso, M, Hoffmann, E, Franceschi, C, Caruso, C. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 2004; 292: 2339–40.
88Sun, Q, Liu, Q, Zheng, Y, Cao, X. Rapamycin suppresses TLR4-triggered IL-6 and PGE(2) production of colon cancer cells by inhibiting TLR4 expression and NK-kappaB activation. Mol Immunol 2008; 45: 2929–36.
89Sakkoula, E, Pipili-Synetos, E, Maragoudakis, ME. Involvement of nitric oxide in the inhibition of angiogenesis by interleukin-2. Br J Pharmacol 1997; 122: 793–95.
90Brivio, F, Lissoni, P, Rovelli, F, Nespoli, A, Uggeri, F, Fumagalli, L, Gardani, G. Effects of IL-2 pre-operative immunotherapy-induced changes in angiogenic regulation and its prevention of VEGF increase and IL-12 decline. Hepatogastroenterology 2002; 49: 385–87.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed