Skip to main content Accessibility help
×
Home

THREE CHARACTERIZATIONS OF STRICT COHERENCE ON INFINITE-VALUED EVENTS

  • TOMMASO FLAMINIO (a1)

Abstract

This article builds on a recent paper coauthored by the present author, H. Hosni and F. Montagna. It is meant to contribute to the logical foundations of probability theory on many-valued events and, specifically, to a deeper understanding of the notion of strict coherence. In particular, we will make use of geometrical, measure-theoretical and logical methods to provide three characterizations of strict coherence on formulas of infinite-valued Łukasiewicz logic.

Copyright

Corresponding author

*IIIA - CSIC CAMPUS DE LA UNIVERSIDAD AUTÒNOMA DE BARCELONA S/N 08193 BELLATERRA, SPAIN E-mail: tommaso@iiia.csic.es

References

Hide All
[1]Carnap, R. (1950). The Logical Foundations of Probability. Chicago: University of Chicago Press.
[2]Chang, C.C. (1958). Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society, 88, 467490.
[3]Cignoli, R., D’Ottaviano, I. M. L., & Mundici, D. (2000). Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Vol. 8. Dordrecht: Kluwer.
[4]Cignoli, R. & Marra, V. (2012). Stone duality for real-valued multisets. Forum Mathematicum, 24 (6), 13171331.
[5]de Finetti, B. (1931). Sul significato soggettivo della probabilità. Fundamenta Mathematicae, 17, 298329. Translated into English as “On the subjective meaning of probability.” In Monari, P., and Cocchi, D., editors. Probabilità e Induzione. Bologna: Clueb, pp. 291321, 1993 .
[6]de Finetti, B. (1974). Theory of Probability, Vol. 1. New York: Wiley.
[7]Desiderata, F. P. & Shamos, M. I. (1985). Computational Geometry – An Introduction. New York: Springer-Verlag.
[8]Ewald, G. (1996). Combinatorial Convexity and Algebraic Geometry. New York: Springer-Verlag.
[9]Flaminio, T., Godo, L., & Hosni, H. (2014). On the logical structure of de Finetti’s notion of event. Journal of Applied Logic, 12(3), 279301.
[10]Flaminio, T., Hosni, H., & Lapenta, S. (2018). Convex MV-algebras: Many-valued logics meet decision theory. Studia Logica, 106(5), 913945.
[11]Flaminio, T., Hosni, H., & Montagna, F. (2018). Strict coherence on many-valued events. The Journal of Symbolic Logic, 83(1), 5569.
[12]Flaminio, T. & Kroupa, T. (2015). States of MV-algebras. In Fermüller, C., Cintula, P., and Noguera, C., editors. Handbook of Mathematical Fuzzy Logic - volume 3. Studies in Logic, Mathematical Logic and Foundations, Vol. 58, Chapter XVII. London: College Publications.
[13]Gaifman, H. (1964). Concerning measures on Boolean algebras. Pacific Journal of Mathematics, 14(1), 6173.
[14]Hähnle, R. (1994). Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence, 12(3–4), 231263.
[15]Kelley, J. L. (1959). Measures on Boolean Algebras. Pacific Journal of Mathematics, 9(4), 11651177.
[16]Kemeny, J. G. (1955). Fair bets and inductive probabilities. The Journal of Symbolic Logic, 20(3), 263273.
[17]Kroupa, T. (2006). Every state on semisimple MV-algebra is integral. Fuzzy Sets and Systems, 157(20), 27712787.
[18]Kroupa, T. (2012). States in Łukasiewicz logic corresponds to probabilities of rational polyhedra. International Journal of Approximate Reasoning, 53, 435446.
[19]Kühr, J. & Mundici, D. (2007). De Finetti theorem and Borel states in [0, 1]-valued algebraic logic. International Journal of Approximate Reasoning, 46(3), 605616.
[20]Marra, V. (2014). The problem of artificial precision in theories of vagueness: A note on the rôle of maximal consistency. Erkenntnis, 79(5), 10151026.
[21]Marra, V. & Spada, L. (2013). Duality, projectivity and unification in Łukasiewicz logic and MV-algebras. Annals of Pure and Applied logic, 164(3), 192210.
[22]McMullen, P. & Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series, Vol. 3. London: Cambridge University Press.
[23]McNaughton, R. (1951). A theorem about infinite-valued sentential logic. The Journal of Symbolic Logic, 16, 113.
[24]Mundici, D. (1994). A constructive proof of McNaughton’s theorem in infinite-valued logic. The Journal of Symbolic Logic, 58(2), 596602.
[25]Mundici, D. (1995). Averaging the truth-value in Łukasiewicz logic. Studia Logica, 55(1), 113127.
[26]Mundici, D. (2006). Bookmaking over infinite-valued events. International Journal of Approximate Reasoning, 43(3), 223240.
[27]Mundici, D. (2011). Advanced Łukasiewicz Calculus and MV-algebras. Trends in Logic 35, Springer, 2011.
[28]Mundici, D. (2011). Finite axiomatizability in Łukasiewicz logic. Annals of Pure and Applied Logic, 162, 10351047.
[29]Panti, G. (2009). Invariant measures on free MV-algebras. Communications in Algebra, 36(8), 28492861.
[30]Paris, J. (2001). A note on the Dutch Book method. In De Cooman, G., Fine, T., and Seidenfeld, T., editors. Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications. ISIPTA 2001. Ithaca, NY: Shaker Publishing Company, pp. 301306.
[31]Paris, J. B. & Vencovska, A. (2015). Pure Inductive Logic. Cambridge, UK: Cambridge University Press.
[32]Shimony, A. (1955). Coherence and the axioms of confirmation. The Journal of Symbolic Logic, 20(1), 128.
[33]Todorcevic, S. (1997). Topics in Topology. Lecture Notes in Mathematics. Berlin: Springer.
[34]Weatherson, B. (2003). From classical to intuitionistic probability. Notre Dame Journal of Formal Logic, 44(2), 111123.

Keywords

THREE CHARACTERIZATIONS OF STRICT COHERENCE ON INFINITE-VALUED EVENTS

  • TOMMASO FLAMINIO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.