Skip to main content Accessibility help
×
Home

SIZE AND LOGIC

  • DOV M. GABBAY (a1) and KARL SCHLECHTA (a2)

Abstract

We show how to develop a multitude of rules of nonmonotonic logic from very simple and natural notions of size, using them as building blocks.

Copyright

Corresponding author

*DEPARTMENT OF COMPUTER SCIENCE, KING’S COLLEGE LONDON, STRAND, LONDON WC2R 2LS, UK. E-mail: dov.gabbay@kcl.ac.uk
LABORATOIRE D’INFORMATIQUE FONDAMENTALE DE MARSEILLE, UMR 6166, CNRS AND UNIVERSITÉ DE PROVENCE, CMI, 39, RUE JOLIOT-CURIE, F-13453 MARSEILLE, CEDEX 13, FRANCE. E-mail: ks@cmi.univ-mrs.fr, karl.schlechta@web.de, URL: http://www.cmi.univ-mrs.fr/~ks

References

Hide All
Ben-David, S., & Ben-Eliyahu, R. (1994). A modal logic for subjective default reasoning. In Abramsky, S., editor. Proceedings LICS-94. July 1994. Paris, France: IEEE Computer Science Press, pp. 477486.
Bezzazi, H., Makinson, D., & Perez, R. P. (1997). Beyond rational monotony: Some strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and Computation, 7(5), 605631.
Friedman, N., & Halpern, J. (1996). Plausibility measures and default reasoning. Journal of the ACM, 48, 12971304.
Gabbay, D., & Schlechta, K. (2009). Journal of applied nonclassical logic, Vol. 19/1. Hermes, Cachan, France, pp. 4495.
Hawthorne, J. (1996). On the logic of nonmonotonic conditionals and conditional probabilities. Journal of Philosophical Logic, 25(2), 185218.
Hawthorne, J. (2007). Nonmonotonic conditionals that behave like conditional probabilities above a threshold. Journal of Applied Logic, 5(4), 625637.
Hawthorne, J., & Makinson, D. (2007). The quantitative/qualitative watershed for rules of uncertain inference. Studia Logica, 86(2), 247297.
Schlechta, K. (1990). Semantics for defeasible inheritance. In Aiello, L. G., editor. Proceedings ECAI 90. August, 1990, Stockholm, Sweden. Berlin: Springer, pp. 594597.
Schlechta, K. (1995). Defaults as generalized quantifiers. Journal of Logic and Computation, 5(4), 473494.
Schlechta, K. (1997). Filters and partial orders. Journal of the Interest Group in Pure and Applied Logics, 5(5), 753772.

Related content

Powered by UNSILO

SIZE AND LOGIC

  • DOV M. GABBAY (a1) and KARL SCHLECHTA (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.