Skip to main content Accessibility help
×
Home

RELATIVE-SAMENESS COUNTERPART THEORY

  • DELIA GRAFF FARA (a1)

Extract

Just as set theory can be divorced from Ernst Zermelo's original axiomatization of it, counterpart theory can be divorced from the eight postulates that were originally stipulated by David Lewis (1968, p. 114) to constitute it. These were postulates governing some of the properties and relations holding among possible worlds and their inhabitants. In particular, counterpart theory can be divorced from Lewis's postulate P2, the stipulation that individuals are ‘world bound’—that none exists in more than one possible world

Copyright

Corresponding author

*PHILOSOPHY DEPT 212 1879 HALL PRINCETON UNIVERSITY PRINCETON, NJ 08544 USA Email: graff@princeton.edu

References

Hide All
Bennett, K. (2004). Spatio-temporal coincidence and the grounding problem. Philosophical Studies, 118(3), 339371.
Fara, D. G. (2001). Phenomenal continua and the sorites. Mind, 110(440), 905935. Published under the name ‘Delia Graff’.
Fara, M., & Williamson, T. (2005). Counterparts and actuality. Mind, 114, 130.
Fine, K. (2003). The non-identity of a material thing and its matter. Mind, 114, 195234.
Forbes, G. (1982). Canonical counterpart theory. Analysis, 42(1), 3337.
Forbes, G. (1985). The Metaphysics of Modality. Oxford: Oxford University Press.
Forbes, G. (1990). Counterparts, logic and metaphysics: reply to Ramachandran. Analysis, 50, 167173.
Gibbard, A. (1975). Contingent identity. Journal of Philosophical Logic, 4, 187221.
Hazen, A. (1979). Counterpart-theoretic semantics for modal logic. Journal of Philosophy, 76(6), 319338.
Hodes, H. (1984). Axioms for actuality. Journal of Philosophical Logic, 13(1), 2734.
Kripke, S. (1963). Semantical considerations on modal logic. Acta Philosophical Fennica, 16, 8394.
Kripke, S. (1972). Naming and necessity. In Davidson, D., & Harman, G., editors, Semantics of Natural Language. Dordrecht: Reidel, pp. 253355. Reprinted as Kripke [1980].
Kripke, S. (1980). Naming and Necessity. Cambridge, MA: Harvard University Press.
Lewis, D. (1968). Counterpart theory and quantified modal logic. Journal of Philosophy, 65(5), 113126.
Lewis, D. (1971). Counterparts of persons and their bodies. Journal of Philosophy, 68(7), 203211.
Lewis, D. (1986). On the Plurality of Worlds. Oxford: Blackwell.
Prior, A. N. (1956). Modality and quantification in S5. Journal of Symbolic Logic, 21(1), 6062.
Ramachandran, M. (1989). An alternative translation scheme for counterpart theory. Analysis, 49, 131141.
Ramachandran, M. (1990a). Contingent identity in counterpart theory. Analysis, 50, 163166.
Ramachandran, M. (1990b). Unsuccessful revisions of CCT. Analysis, 50, 173177.
Ramachandran, M. (1998). Sortal modal logic and counterpart theory. Australasian Journal of Philosophy, 76, 553565.
Sider, T. (1996). All the World's a stage. Australasian Journal of Philosophy, 74(3), 433453.
Sider, T. (1999). Critical study of Michael Jubien's Ontology, Modality and the Fallacy of Reference. NOÛS, 33, 284294.
Stalnaker, R. (1986). Counterparts and identity. Midwest Studies in Philosophy, 11, 121140. Page references are to reprinted version Stalnaker [2003b].
Stalnaker, R. (2003a). The interaction of modality with quantification and identity. In Sinnot-Armstrong, W., Raffman, D., & Asher, N., editors, Modality, Morality and Belief: Essays in Honor of Ruth Barcan Marcus. Cambridge: Cambridge University Press. pp. 1228.
Stalnaker, R. (2003b). Ways a World Might Be. Oxford: Oxford University Press.
Thomson, J., & Byrne, A., editors. (2006). Content and Modality: Themes from the Philosophy of Robert Stalnaker. Oxford: Oxford University Press.
Williamson, T. (1998). Bare possibilia. Erkenntnis. 48, 257273.
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65, 261281. English translation in Heijenoort, Jean van, editor. (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, pp. 199215.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed