Skip to main content Accessibility help




Natural Formalization proposes a concrete way of expanding proof theory from the meta-mathematical investigation of formal theories to an examination of “the concept of the specifically mathematical proof.” Formal proofs play a role for this examination in as much as they reflect the essential structure and systematic construction of mathematical proofs. We emphasize three crucial features of our formal inference mechanism: (1) the underlying logical calculus is built for reasoning with gaps and for providing strategic directions, (2) the mathematical frame is a definitional extension of Zermelo–Fraenkel set theory and has a hierarchically organized structure of concepts and operations, and (3) the construction of formal proofs is deeply connected to the frame through rules for definitions and lemmas.

To bring these general ideas to life, we examine, as a case study, proofs of the Cantor–Bernstein Theorem that do not appeal to the principle of choice. A thorough analysis of the multitude of “different” informal proofs seems to reduce them to exactly one. The natural formalization confirms that there is one proof, but that it comes in two variants due to Dedekind and Zermelo, respectively. In this way it enhances the conceptual understanding of the represented informal proofs. The formal, computational work is carried out with the proof search system AProS that serves as a proof assistant and implements the above inference mechanism; it can be fully inspected at

We must—that is my conviction—take the concept of the specifically mathematical proof as an object of investigation.

Hilbert 1918


Corresponding author



Hide All
Alcock, L., Hodds, M., Roy, S., & Inglis, M. (2015). Investigating and improving undergraduate proof comprehension. Notice of the American Mathematical Society, 62(7), 742753.
Banach, S. (1924). Un théorème sur les transformations biunivoques. Fundamenta Mathematicae, 1(6), 236239.
Barendregt, H. & Wiedijk, F. (2005). The challenge of computer mathematics. Philosophical Transactions of the Royal Society A, 363(1835), 23512375.
Blaine, L. H. (1981). Programs for structured proofs. In (Suppes, 1981, pp. 81120).
Borel, É. (1921). Leçons sur la théorie des fonctions. Paris: Gauthier-Villars. First edition was published in 1898.
Bourbaki, N. (2004). Theory of Sets. Berlin: Springer.
Bundy, A. (1991). A science of reasoning. In Lassez, J. and Plotkin, G., editors. Computational Logic: Essays in Honor of Alan Robinson. Cambridge, MA: MIT Press, pp. 178198.
Cantor, G. (1932). Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts. Berlin: Springer.
de Bruijn, N. G. (1970). The mathematical language AUTOMATH, its usage, and some of its extensions. In Laudet, M., Lacombe, D., Nolin, L., and Schützenberger, M., editors. Symposium on Automatic Demonstration. Lecture Notes in Mathematics. Berlin: Springer, pp. 2961.
de Bruijn, N. G. (1973). AUTOMATH: A Language for Mathematics. Les Presses de l’Université de Montréal.
Dedekind, R. (1888). Was sind und was sollen die Zahlen? Braunschweig: Vieweg. Translated in (Ewald, 1996, pp. 787833).
Dedekind, R. (1932). Gesammelte Mathematische Werke, Vol. 3. Braunschweig: Vieweg.
Deiser, O. (2010). Introductory note to 1901. In (Zermelo, 2010, pp. 5270).
Diaz-Lopez, A. (2016). Interview with Sir Timothy Gowers. Notices of the American Mathematical Society, 63(9), 10261028.
Ewald, W. B. (editor) (1996). From Kant to Hilbert: Readings in the Foundations of Mathematics. Oxford: Oxford University Press.
Ferreirós, J. (1993). On the relations between Georg Cantor and Richard Dedekind. Historia Mathematica, 20(4), 343363.
Frege, G. (1893). Grundgesetze der Arithmetik. Jena: Pohle Verlag.
Ganesalingam, M. & Gowers, W. T. (2013). A fully automatic problem solver with human-style output. arXiv:1309.4501.
Ganesalingam, M. & Gowers, W. T. (2017). A fully automatic theorem prover with human-style output. Journal of Automated Reasoning, 58(2), 253291.
Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112(1), 493565.
Gibson, T. (2006). Proof Search in First-Order Logic with Equality. Master’s Thesis, Carnegie Mellon University.
Gowers, W. T. (2007). Mathematics, memory, and mental arithmetic. In Leng, M., Paseau, A., and Potter, M., editors. Mathematical Knowledge. Oxford: Oxford University Press, pp. 3358.
Grattan-Guinness, I. (2000). The Search for Mathematical Roots, 1870–1940: Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel. Princeton: Princeton University Press.
Hallett, M. (1988). Cantorian Set Theory and Limitation of Size. Oxford: Oxford University Press.
Hamami, Y. (2018). Mathematical inference and logical inference. The Review of Symbolic Logic, 11(4), 665704.
Hamami, Y. (2019). Mathematical rigor and proof. Manuscript.
Harrison, J. (2008). Formal proof–theory and practice. Notices of the American Mathematical Society, 55(11), 13951406.
Harrison, J. (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge: Cambridge University Press.
Harrison, J., Urban, J., & Wiedijk, F. (2014). History of interactive theorem proving. In Gabbay, D., Siekmann, J., and Woods, J., editors. Computational Logic: Handbook of the History of Logic, Vol. 9. Amsterdam: North-Holland, pp. 135214.
Hewitt, E. & Stromberg, K. (1969). Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Berlin: Springer-Verlag.
Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 78, 405415.
Hilbert, D. (1927). Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, (6), 6585.
Hilbert, D. (2013). David Hilbert’s Lectures on the Foundations of Arithmetic and Logic: 1917–1933, Vol. 3, edited by Ewald, W. B. and Sieg, W.. Berlin: Springer-Verlag.
Hinkis, A. (2013). Proofs of the Cantor-Bernstein Theorem: A Mathematical Excursion. Science Networks, Historical Studies, Vol. 45. Basel: Birkhäuser Verlag.
Jaśkowski, S. (1934). On the rules of suppositions in formal logic. Studia Logica, 1, 432.
Jutting, L.S. (1973). The development of a text in AUT-QE. In Braffort, P., editor. APLASM’73, Symposium d’Orsay sur la Manipulation des Symboles et l’Utilisation d’APL, Volume 1. Paris: Université Paris Sud, Chapter 4.
Kanamori, A. (2004). Zermelo and set theory. Bulletin of Symbolic Logic, 10(4), 487553.
Kash, I. (2004). A Partially Automated Proof of the Cantor-Bernstein Theorem. Senior Thesis, Carnegie Mellon University.
Knaster, B. & Tarski, A. (1928). Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise des Mathématiques, 6, 133134.
König, J. (1906). Sur la théorie des ensembles. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 143, 110112.
Korselt, A. (1911). Über einen Beweis des Äquivalenzsatzes. Mathematische Annalen, 70(2), 294296.
Lamport, L. (1995). How to write a proof. The American Mathematical Monthly, 102(7), 600608.
Lamport, L. (2012). How to write a 21 st century proof. Journal of Fixed Point Theory and Applications, 11(1), 4363.
Livnat, E. (2011). The Cantor-Bernstein Theorem in AProS. Master’s Thesis, Carnegie Mellon University.
Mac Lane, S. (1934). Abgekürzte Beweise im Logikkalkül. Ph.D. Thesis, Göttingen.
Mac Lane, S. (1935). A logical analysis of mathematical structure. The Monist, 45(1), 118130.
Mac Lane, S. (1979). A late return to a thesis in logic. In Kaplansky, I., editor. Saunders MacLane — Selected Papers. New York: Springer, pp. 6366.
Mac Lane, S. (2005). Saunders Mac Lane: A Mathematical Autobiography. Wellesley, MA: AK Peters/CRC Press.
McDonald, J. & Suppes, P. (1984). Student use of an interactive theorem prover. Contemporary Mathematics, 29, 315360.
Nederpelt, R. (1977). Presentation of natural deduction. Symposium: Set Theory, Foundations of Mathematics. Nouvelle Série, Vol. 2(10), Recueil des travaux de l’Institut Mathématique, pp. 115126.
Omodeo, E. G. & Schwartz, J. T. (2002). A ‘Theory’ mechanism for a proof-verifier based on first-order set theory. In Kakas, A. and Sadri, F., editors. Computational Logic: Logic Programming and Beyond - Essays in Honour of Bob Kowalski, Part II. Heidelberg: Springer, pp. 214230.
Pastre, D. (2002). Strong and weak points of the MUSCADET theorem prover–examples from CASC-JC. AI Communications, 15(2, 3), 147160.
Paulson, L. C. (1993). Set theory for verification I: From foundations to functions. Journal of Automated Reasoning, 11(3), 353389.
Paulson, L. C. (1994). A fixedpoint approach to implementing (co)inductive definitions. In Bundy, A., editor. Automated Deduction CADE-12. Lecture Notes in Computer Science, Vol. 814. Berlin: Springer, pp. 148181.
Paulson, L. C. (1995). Set theory for verification II: Induction and recursion. Journal of Automated Reasoning, 15(2), 167215.
Paulson, L. C. (2014). A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets. The Review of Symbolic Logic, 7(3), 484498.
Peano, G. (1906a). Super theorema de Cantor-Bernstein. Rendiconti del Circolo Matematico di Palermo (1884–1940), 21, 360366.
Peano, G. (1906b). Super theorema de Cantor-Bernstein. Revisita di Matematica, 8, 136143.
Poincaré, H. (1906). Les mathématiques et la logique. Revue de métaphysique et de morale, 14(3), 294317.
Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Stockholm: Almqvist & Wiksell.
Schröder, E. (1898). Über zwei Definitionen der Endlichkeit und G. Cantorsche Sätze. Nova Acta Academiae Caesareae Leopoldino-Carolinae, 71, 303362.
Schwartz, J. T., Cantone, D., & Omodeo, E. G. (2011). Computational Logic and Set Theory. London: Springer.
Sieg, W. (1992). Mechanisms and Search – Aspects of Proof Theory, Vol. 14. Associazione Italiana di Logica e sue Applicazioni.
Sieg, W. (1997). Aspects of mathematical experience. Reprinted in (Sieg, 2013, pp. 329343).
Sieg, W. (2010). Searching for proofs (and uncovering capacities of the mathematical mind). Reprinted in (Sieg, 2013, pp. 377401).
Sieg, W. (2013). Hilbert’s Programs and Beyond. Oxford: Oxford University Press.
Sieg, W. (2019a). The Cantor–Bernstein theorem: How many proofs? Philosophical Transactions of the Royal Society A, 377(2140), 20180031.
Sieg, W. (2019b). Methodological frames: Paul Bernays, mathematical structuralism, and proof theory. In Reck, E. & Schiemer, G., editors. The Pre-history of Mathematical Structuralism, to appear. Oxford: Oxford University Press.
Sieg, W., & Byrnes, J. (1998). Normal natural deduction proofs (in classical logic). Studia Logica, 60(1), 67106.
Sieg, W. & Cittadini, S. (2005). Normal natural deduction proofs (in non-classical logics). In Hutter, D. & Stephan, W., editors. Mechanizing Mathematical Reasoning. Lecture Notes in Computer Science, Vol. 2605. Heidelberg: Springer, pp. 169191.
Sieg, W. & Derakshan, F. (2020). Human-oriented automated proof search. Manuscript.
Sieg, W. & Field, C. (2005). Automated search for Gödel’s proofs. Annals of Pure and Applied Logic, 133, 319338.
Sieg, W. & Schlimm, D. (2014). Dedekind’s abstract concepts: Models and mappings. Philosophia Mathematica, 25(3), 292317.
Stegmüller, W. (1979). The Structuralist View of Theories: A Possible Analogue of the Bourbaki Programme in Physical Science. Berlin: Springer-Verlag.
Suppes, P. (editor) (1981). University-level Computer-assisted Instruction at Stanford: 1968–1980. Stanford, CA: Institute for Mathematical Studies in the Social Sciences.
Suppes, P. (2002). Representation and Invariance of Scientific Structures. Stanford, CA: CSLI Publications.
Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5(2), 285309.
Thiele, R. (2003). Hilbert’s twenty-fourth problem. The American Mathematical Monthly, 110(1), 124.
Thiele, R. (2005). Hilbert and his twenty-four problems. In van Brummeln, G. and Kinyon, M., editors. Mathematics and the Historians’ Craft. Springer, pp. 243295.
Troelstra, A. S. & Schwichtenberg, H. (2000). Basic Proof Theory (second edition). Cambridge University Press.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230265.
Turing, A. M. (1948a). Intelligent machinery. In Ince, D., editor. Collected Works of A.M. Turing, Mechanical Intelligence. Amsterdam: North Holland, pp. 107127. Originally written as a report for the national physical labratory, 1992.
Turing, A. M. (1948b). Practical forms of type theory. The Journal of Symbolic Logic, 13(2), 8094.
van Heijenoort, J. (editor) (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Cambridge: Harvard University Press.
Whitehead, A. N. (1902). On cardinal numbers. American Journal of Mathematics, 24(4), 367394.
Whitehead, A. N., & Russell, B. (1912). Principia Mathematica, Vol. 2. Cambridge: Cambridge University Press.
Wiedijk, F. (2004). Formal proof sketches. In Berardi, S., Coppo, M., and Damiani, F., editors. Types for Proofs and Programs; International Workshop, Types 2003, Turin. Lecture Notes in Computer Science, Vol. 3085. Berlin: Springer, pp. 378393.
Wiedijk, F. (2008). Formal proof: Getting started. Notices of the American Mathematical Society, 55(11), 14081414.
Windsteiger, W. (2006). An automated prover for Zermelo-Fraenkel set theory in Theorema. Journal of Symbolic Computation, 41(3–4), 435470.
Wu, S. (2017). Logic Translation Algorithm. Senior Thesis, Carnegie Mellon University.
Zermelo, E. (1901). Über die Addition transfiniter Kardinalzahlen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse aus dem Jahre 1901, 1901, 3438. Reprinted in (Zermelo, 2010).
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65(2), 261281. Translated in (van Heijenoort, 1967, pp. 199–215).
Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae, 16, 2947. Translated in (Ewald, 1996, pp. 1219–1233).
Zermelo, E. (2010). Collected Works, Gesammelte Werke, 1: Set theory, Miscellanea, Mengenlehre, Varia, edited by Ebbinghaus, H.-D., Kanamori, A., and Fraser, C. G.. Berlin: Springer Verlag.
Zipperer, A. (2016). A Formalization of Elementary Group Theory in the Proof Assistant Lean. Master’s Thesis, Carnegie Mellon University.





Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.