Skip to main content Accessibility help
×
Home

FROM STENIUS’ CONSISTENCY PROOF TO SCHÜTTE’S CUT ELIMINATION FOR ω-ARITHMETIC

  • ANNIKA SIDERS (a1)

Abstract

The book Das Interpretationsproblem der Formalisierten Zahlentheorie und ihre Formale Widerspruchsfreiheit by Erik Stenius published in 1952 contains a consistency proof for infinite ω-arithmetic based on a semantical interpretation. Despite the proof’s reference to semantics the truth definition is in fact equivalent to a syntactical derivability or reduction condition. Based on this reduction condition Stenius proves that the complexity of formulas in a derivation can be limited by the complexity of the conclusion. This independent result can also be proved by cut elimination for ω-arithmetic which was done by Schütte in 1951.

In this paper we interpret the syntactic reduction in Stenius’ work as a method for cut elimination based on invertibility of the logical rules. Through this interpretation the constructivity of Stenius’ proof becomes apparent. This improvement was explicitly requested from Stenius by Paul Bernays in private correspondence (In a letter from Bernays begun on the 19th of September 1952 (Stenius & Bernays, 1951–75)). Bernays, who took a deep interest in Stenius’ manuscript, applied the described method in a proof Herbrand’s theorem. In this paper we prove Herbrand’s theorem, as an application of Stenius’ work, based on lecture notes of Bernays (Bernays, 1961). The main result completely resolves Bernays’ suggestions for improvement by eliminating references to Stenius’ semantics and by showing the constructive nature of the proof. A comparison with Schütte’s cut elimination proof shows how Stenius’ simplification of the reduction of universal cut formulas, which in Schütte’s proof requires duplication and repositioning of the cuts, shifts the problematic case of reduction to implications.

Copyright

Corresponding author

*DEPARTMENT OF PHILOSOPHY P.O. BOX 24 (UNIONINKATU 40 A) FI - 00014 UNIVERSITY OF HELSINKI FINLAND E-mail: annika.siders@helsinki.fi

References

Hide All
Bernays, P. (1952). Paul Bernays’ lecture on Erik Stenius’ das Interpretationsproblem … (Kept as Hs 973:86 “Betr. Abh. von Stenius” in the archive of the ETH Zurich).
Bernays, P. (1954). Über den Zusammenhang des Herbrandschen Satses mit den neueren Ergebnissen von Schütte and Stenius. In Proceedings of the International Congress of Mathematicians 1954, vol. II.
Bernays, P. (1961). Paul Bernays’ lectures on the aims and topics of proof theory (Kept as Hs 973:28 “Aims and topics of proof theory” in the archive of the ETH Zurich).
Bernays, P. (1970). On the Original Gentzen Consistency Proof for Number Theory, In Kino, Myhill & Vesley, , editors. Intuitionism and Proof Theory, pp. 409417.
Buss, S. (1998). Handbook Proof Theory. Elsevier: Amsterdam.
Gentzen, G. (1934). Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, 39, 405431.
Gentzen, G. (1938). Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, 4, 1944.
Gentzen, G. (1974). Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie, Archiv für Mathematische Logik und Grundlagenforschung 16, 97118.
Ketonen, O. (1944). Untersuchungen zum Prädikatenkalkül. Annales Academiae Scientarum Fennicae, Series A.1, 23.
Kreisel, G. (1953). Reviewed work(s): Das Interpretationsproblem der formalisierten Zahlentheorie und ihre formale Widerspruchsfreiheit by Erik Stenius. Journal of Symbolic Logic, 18(3): 262263.
Negri, S. & von Plato, J. (1998). Cut elimination in the presence of axioms. The Bulletin of Symbolic Logic, 4, 418435.
Negri, S. & von Plato, J. (2001). Structural Proof Theory. Cambridge University Press, Cambridge.
von Plato, J. (2001). A proof of Gentzen’s Hauptsatz without multicut. Archive for Mathematical Logic, 40, 918.
von Plato, J. (2006). Normal form and existence property for derivations in Heyting arithmetic. Acta Philosophica Fennica, 78, 159163.
Schütte, K. (1951). Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. Mathematische Annalen, 122(5), 369389.
Stenius, E. (1952). Das Interpretationsproblem der Formalisierten Zahlentheorie und ihre Formale Widerspruchsfreiheit. Acta Academiae Aboensis, Åbo.
Stenius, E. (1956). ‘Drafts for new versions of Das Interpretationsproblem from Stenius’ manuscripts’, kept as II.1 ‘Bevisteori. Utkast till ombearbetning av Das Interpretationsproblem -56. Kommentarer till Bernays, Büchli, Wright, Curry o.a’ in the archive of the National Library of Finland in Helsinki.
Stenius, E. & Bernays, P. (1951–75). Correspondence between Stenius and Bernays from Stenius’ manuscripts’, 8 letters from Bernays are kept as XII.1 and 5 letters to Bernays are kept as XII.2 in the archive of the National Library of Finland in Helsinki.
Tait, W. W. (2015). Gentzen’s original consistency proof and the Bar Theorem. In Kahle, & Rathjen, , editors. Gentzen’s Centenary: The Quest for Consistency, Berlin: Springer.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

FROM STENIUS’ CONSISTENCY PROOF TO SCHÜTTE’S CUT ELIMINATION FOR ω-ARITHMETIC

  • ANNIKA SIDERS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.