Skip to main content Accessibility help
×
Home

DISTANCES BETWEEN FORMAL THEORIES

  • MOHAMED KHALED (a1), GERGELY SZÉKELY (a2), KOEN LEFEVER (a3) and MICHÈLE FRIEND (a4)

Abstract

In the literature, there have been several methods and definitions for working out whether two theories are “equivalent” (essentially the same) or not. In this article, we do something subtler. We provide a means to measure distances (and explore connections) between formal theories. We introduce two natural notions for such distances. The first one is that of axiomatic distance, but we argue that it might be of limited interest. The more interesting and widely applicable notion is that of conceptual distance which measures the minimum number of concepts that distinguish two theories. For instance, we use conceptual distance to show that relativistic and classical kinematics are distinguished by one concept only.

Copyright

Corresponding author

*FACULTY OF ENGINEERING AND NATURAL SCIENCES BAHÇEŞEHIR UNIVERSITY ISTANBUL, TURKEY E-mail: mohamed.khalifa@eng.bau.edu.tr
**SET THEORY, LOGIC AND TOPOLOGY ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS BUDAPEST, HUNGARY E-mail: szekely.gergely@renyi.hu
CENTRE FOR LOGIC AND PHILOSOPHY OF SCIENCE VRIJE UNIVERSITEIT BRUSSEL BRUSSELS, BELGIUM E-mail: koen.lefever@vub.be
DEPARTMENT OF PHILOSOPHY GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC, USA and UNIVERSITÉ DE LILLE LILLE, FRANCE E-mail: michele@gwu.edu

References

Hide All
[1]Andréka, H., Comer, S. D., Madarász, J. X., Németi, I., & Ahmed, T. S. (2009). Epimorphisms in cylindric algebras and definability in finite variable logic. Algebra Universalis, 61 (3), 261282.
[2]Andréka, H., Madarász, J. X., & Németi, I. (2004). Logical analysis of relativity theories. In Hendricks, V., Neuhaus, F., Pedersen, S. A., Scheffler, U., and Wansing, H., editors. First-order Logic Revisited. Berlin: Logos Verlag, pp. 736.
[3]Andréka, H., Madarász, J. X., & Németi, I. (2005). Mutual definability does not imply definitional equivalence, a simple example. Mathematical Logic Quarterly, 51(6), 591597.
[4]Andréka, H., Madarász, J. X., Németi, I., & Székely, G. (2012). A logic road from special relativity to general relativity. Synthese, 186(3), 633649.
[5]Andréka, H., Madarász, J. X., Németi, I., with contributions from: Andai, A., Sági, G., Sain, I., & Tőke, C. (2002). On the Logical Structure of Relativity Theories. Research report, Alfréd Rényi Institute of Mathematics, Budapest: Hungarian Academy of Sciences. Available at: https://old.renyi.hu//pub/ algebraic-logic/Contents.html.
[6]Andréka, H. & Németi, I. (2017). How many varieties of cylindric algebras are there. Transactions of the American Mathematical Society, 369, 89038937.
[7]Andréka, H., van Benthem, J., & Németi, I. (1998). Modal languages and bounded fragments of predicate logic. Journal of philosophical logic, 27(3), 217274.
[8]Baltag, A. & Smets, S. (2005). Complete axiomatizations for quantum actions. International Journal of Theoretical Physics, 44(12), 22672282.
[9]Banerjee, A. & Khaled, M. (2018). First order logic without equality on relativized semantics. Annals of Pure and Applied Logic, 169(11), 12271242.
[10]Barrett, T. W. & Halvorson, H. (2016). Glymour and quine on theoretical equivalence. Journal of Philosophical Logic, 45(5), 467483.
[11]Carathéodory, C. (1909). Untersuchungen über die grundlagen der thermodynamik. Mathematische Annalen, 64, 355386.
[12]Chang, H. (2012). Is Water H2O ? Evidence, Realism and Pluralism. Dordrecht: Springer.
[13]Cooper, J. L. B. (1967). The foundations of thermodynamics. Journal of Mathematical Analysis and Applications, 17, 172193.
[14]Fine, K. (1985). Natural deduction and arbitrary objects. Journal of Philosophical Logic, 14(1), 57107.
[15]Floyd, R. W. (1967). Assingining meanings to programs. Proceedings of Symposia in Applied Mathematics, 19, 1932.
[16]Goodman, N. (1943). On the simplicity of ideas. The Journal of Symbolic Logic, 8(4), 107121.
[17]Henkin, L. (1950). The Completeness of Formal Systems. Ph.D. Thesis, Princeton University.
[18]Henkin, L., Monk, J., & Tarski, A. (1971). Cylindric Algebras Part I. Amsterdam: North-Holland.
[19]Henkin, L., Monk, J., & Tarski, A. (1985). Cylindric Algebras Part II. Amsterdam: North-Holland.
[20]Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of the ACM, 12(10), 576583.
[21]Japaridze, G. & Jongh, D. (1998). The logic of provability. In Buss, S. R., editor. Handbook of Proof Theory, Vol. 137. Amsterdam: Elsevier, pp. 475550.
[22]Khaled, M. (2019). The finitely axiomatizable complete theories of nonassociative arrow frames. Advances in Mathematics, 346, 194218.
[23]Krause, D. & Arenhart, J. R. B. (2017). The Logical Foundations of Scientific Theories: Languages, Structures, and Models. New York: Routledge.
[24]Lefever, K. (2017). Using Logical Interpretation and Definitional Equivalence to Compare Classical Kinematics and Special Relativity Theory. Ph.D. Thesis, Vrije Universiteit Brussel.
[25]Lefever, K. & Székely, G. (2018a). Comparing classical and relativistic kinematics in first-order-logic. Logique et Analyse, 61(241), 57117.
[26]Lefever, K. & Székely, G. (2018b). On generalization of definitional equivalence to nondisjoint languages. Journal of Philosophical Logic, 48(4), 709729.
[27]Lieb, E. H. & Yngvason, J. (2000). A fresh look at entropy and the second law of thermodynamics. Physics Today, 53(4), 3237.
[28]Meyer, A. R. & Halpern, J. Y. (1982). Axiomatic definitions of programming languages: A theoretical assessment. Journal of the Association for Computing Machinery, 29(2), 555576.
[29]Pinter, C. C. (1978). Properties preserved under definitional equivalence and interpretations. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 24, 481488.
[30]Ryll-Nardzewski, C. (1952). The role of the axiom of induction in elementary arithmetic. Fundamenta Mathematicae, 39, 239263.
[31]Visser, A. (2006). Categories of theories and interpretations. In Enayat, A., Kalantari, I., and Moniri, M., editors. Logic in Tehran. Proceedings of the Workshop and Conference on Logic, Algebra and Arithmetic, held October 18–22, 2003, Lecture Notes in Logic, Vol. 26. Wellesley, MA: ASL, A.K. Peters, Ltd., pp. 284341.

Keywords

DISTANCES BETWEEN FORMAL THEORIES

  • MOHAMED KHALED (a1), GERGELY SZÉKELY (a2), KOEN LEFEVER (a3) and MICHÈLE FRIEND (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.