Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T19:38:09.263Z Has data issue: false hasContentIssue false

Leukocytes: essential cells in ovarian function and ovulation

Published online by Cambridge University Press:  03 June 2009

RJ Norman*
Affiliation:
Reproductive Medicine Unit, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia
N Bonello
Affiliation:
Reproductive Medicine Unit, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia
MJ Jasper
Affiliation:
Reproductive Medicine Unit, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia
KH Van der Hoek
Affiliation:
Reproductive Medicine Unit, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia
*
Reproductive Medicine Unit, The University of Adelaide, The Queen Elizabeth Hospital, Woodville Road, Woodville, South Australia5011.

Extract

The disciplines of reproduction and immunology, once quite discrete, are now closely associated, with compelling evidence to suggest that immune mechanisms play important roles in the cervix, uterus, fallopian tubes and ovary. Cells and mediators classically described as part of the immune system are found throughout the reproductive tract. Disorders of reproduction, including pre-eclampsia, unexplained infertility, endometriosis, recurrent miscarriage and disturbed fetal growth almost certainly have some of their origins in the dysfunction of immune regulation. There appears to be some evidence that immune disorders, such as rheumatoid arthritis and scleroderma, can manifest as infertility, before clinical disease becomes apparent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kelly, RW. Immunosuppressive mechanisms in semen: implications for contraception. Hum Reprod 1995; 10: 1686–93.CrossRefGoogle ScholarPubMed
2Robertson, SA, Brannstrom, M, Seamark, RF. Cytokines in rodent reproduction and the cytokine-endocrine interaction. Curr Opin Immunol 1992; 4: 585–90.CrossRefGoogle ScholarPubMed
3Boehme, M, Donat, H. Identification of lymphocyte subsets in the human fallopian tube. Am J Reprod Immunol 1992; 38: 81–4.CrossRefGoogle Scholar
4Brannstrom, M, Norman, RJ. Involvement of leukocytes and cytokines in the ovulatory process and corpus luteum function. Hum Reprod 1993; 8: 1762–75.CrossRefGoogle ScholarPubMed
5Norman, RJ, Brannstrom, M. White cells and the ovary - incidental invaders or essential effectors. J Endocrinol 1994; 140: 333–6.CrossRefGoogle ScholarPubMed
6Norman, R, Bonello, N, Jasper, N, Wang, L, Brannstrom, M. Immune-endocrine interactions during ovulation. Singapore J Obstet Gynaecol 1996; 27: 531.Google Scholar
7Norman, R, Brannstrom, M. Cytokines in the ovary: pathophysiology and potential for pharmacological intervention. Pharmacol Ther 1996; 69: 219–36.CrossRefGoogle ScholarPubMed
8Cross, JC, Werb, Z, Fisher, SJ. Implantation and the placenta: key pieces of the development puzzle. Science 1994; 266: 1508–18.CrossRefGoogle ScholarPubMed
9Marchetti, B, Morale, MC, Guarcello, V et al. Cross-talk communication in the neuroendocrinereproductive-immune axis. Age-dependent alterations in the common communication networks. Ann N Y Acad Sci 1990; 594: 309–25.CrossRefGoogle ScholarPubMed
10Nouza, K, Kinský, R, Dimitrov, D. Immunology and immunopathology of reproduction. Folia Biol 1992; 38: 34.Google ScholarPubMed
11Seamark, RF, Hadjisavas, M, Robertson, SA. Influence of the immune system on reproductive function. Am Reprod Sci 1992; 28: 171–8.CrossRefGoogle Scholar
12Nelson, JL, Voigt, LF, Koepsell, TD, Dugowson, CE, Dali, JR. Pregnancy outcome in women with rheumatoid arthritis before disease onset. J Rheumatol 1992; 19: 1821.Google ScholarPubMed
13Adashi, EY. Do cytokines play a role in the regulation of ovarian function. Proc Neuroimmunoendocrinol 1990; 3: 1117.Google Scholar
14Adashi, EY. The potential relevance of cytokines to ovarian physiology. J Steroid Biochem Mol Biol 1992; 43: 439–44.CrossRefGoogle ScholarPubMed
15Terranova, PF, Rice, VM. Review: cytokines involvement in ovarian processes. Am J Reprod Immunol 1997; 37: 5063.CrossRefGoogle ScholarPubMed
16Zolti, M, Ben-Rafael, Z, Meirom, R et al. Cytokine involvement in oocytes and early embryos. Fertil Steril 1992; 56: 265–72.CrossRefGoogle Scholar
17Marchetti, B. Involvement of the thymus in reproduction. Proc Neuroimmunoendocrinol 1989; 2: 64–9.Google Scholar
18Michael, SD. Interactions of the thymus and the ovary. In: Greenwald, GS, Terranova, PF eds. Factors regulating ovarian function. 1983: New York: Raven, 445–64.Google Scholar
19Rebar, RW, Miyake, A, Erickson, GF, Low, TLK, Goldstein, AL. The influence of the thymus gland on reproductive function: a hypothalamic site of action. In: Greenwald, GS, Terranova, PF eds. Factors regulating ovarian function. 1983: New York: Raven, 465.Google Scholar
20Sakakura, T, Nishizuka, Y. Thymic control mechanism in ovarian development: reconstitution of ovarian dysgenesis in thymectomized mice by replacement with thymic and other lymphoid tissues. Endocrinology 1972; 90: 431–7.CrossRefGoogle ScholarPubMed
21Rebar, RW, Morandini, IC, Erickson, GF, Petze, JE. The hormonal basis of reproductive defects in athymic mice: diminished gonadotrophs concentrations in prepubertal females. Endocrinology 1981; 108: 120–6.CrossRefGoogle Scholar
22Nishizuka, Y, Sakakura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969; 166: 753–5.CrossRefGoogle ScholarPubMed
23Allen, LS, McClure, JE, Goldstein, AL, Barkley, MS, Michael, D. Estrogen and thymic hormone interactions in the female mouse. J Reprod Immunol 1984; 6: 2537.CrossRefGoogle ScholarPubMed
24Nishizuka, Y, Sakakura, T. Blockade of central and peripheral luteinizing hormone-releasing hormone (LHRH) receptors in neonatal rats with a potent LHRH-antagonist inhibits the morphofunctional development of the thymus and maturation of the cell-mediated and humoral immune responses. Science 1969; 166: 753–5.CrossRefGoogle Scholar
25Grossman, CJ. Interactions between the gonadal steroids and the immune system. Science 1985; 227: 257–61.CrossRefGoogle ScholarPubMed
26Polan, ML, Loukides, J, Nelson, P et al. Progesterone and estradiol modulate interleukin-IB messenger ribonucleic acid levels in cultured human peripheral monocytes. J Clin Endocrinol Metab 1989; 89: 1200–6.CrossRefGoogle Scholar
27Polan, ML, Kuo, A, Loukides, J, Bottomly, K. Cultured human luteal peripheral monocytes secrete increased levels of interleukin. J Clin Endocrinol Metab 1990; 70: 480–4.CrossRefGoogle ScholarPubMed
28Rouabhia, M, Chakir, J, Deschaux, P. Interaction between the immune and endocrine systems: immunomodulatory effects of luteinizing hormone. Proc Neuroimmunoendocrinol 1991; 4: 8691.Google Scholar
29Azad, N, Emanuele, NV, Malloran, MM, Tentler, J, Kelley, MR. Presence of luteinizing hormonereleasing hormone (LHRH) mRNA in rat spleen lymphocytes. Endocrinology 1991; 128: 1679–81.CrossRefGoogle ScholarPubMed
30Standaert, FE, Zamora, CS, Chew, BP. Quantitative and qualitative changes in blood leukocytes in the porcine ovary. Am J Reprod Immunol 1991; 25: 163–8.CrossRefGoogle ScholarPubMed
31Best, CL, Pudney, J, Welch, WR, Burger, N, Hill, JA. Localization and characterization of white blood cell populations within the human ovary throughout the menstrual cycle and menopause. Hum Reprod 1996; 11: 790–7.CrossRefGoogle ScholarPubMed
32Brännström, M, Mayrhofer, G, Robertson, SA. Localization of leukocyte subsets in the rat ovary during the periovulatory period. Biol Reprod 1993; 48: 277–86.CrossRefGoogle ScholarPubMed
33Pate, JL. Involvement of immune cells in regulation of ovarian function. J Reprod Fertil 1995; 49: 365–77.Google ScholarPubMed
34Hurwitz, A, Ricciarelli, E, Botero, L, Rohan, RM, Hernandez, ER, Adashi, EY. Endocrine- and autocrine-mediated regulation of rat ovarian (theca-interstitial) interleukin-1B gene expression: gonadotropin-dependent preovulatory acquisition. Endocrinology 1991; 129: 3427–9.CrossRefGoogle Scholar
35Cid, MC, Kleinman, HK, Grant, DS, Schnaper, HW, Fauci, AS, Hoffman, GS. Estradiol enhances leukocyte binding to tumor necrosis factor (TNF)-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1. J Clin Invest 1994; 93: 1725.CrossRefGoogle ScholarPubMed
36Murdoch, WJ, McCormick, RJ. Production of low molecular weight chemoattractants for leukocytes by periovulatory ovine follicles. Biol Reprod 1989; 40: 8690.CrossRefGoogle Scholar
37Murdoch, WJ, McCormick, RJ. Mechanisms and physiological implications of leucocyte chemoattraction into periovulatory ovine follicles. J Reprod Fertil 1993; 97: 375–80.CrossRefGoogle ScholarPubMed
38Seow, WK, Thong, YH, Waters, MJ, Walters, B, Cummins, JM. Isolation of a chemotactic protein for neutrophils from human ovarian follicular fluid. Int Arch Allergy Appl Immunol 1988; 86: 331–6.CrossRefGoogle ScholarPubMed
39Cavender, J, Murdoch, W. Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol Reprod 1988; 39: 989–97.CrossRefGoogle ScholarPubMed
40Gaytan, F, Aceitero, J, Bellido, C, Sanchez-Criado, JE, Aguilar, E. Estrous cycle-related changes in mast cell numbers in several ovarian compartments in the rat. Biol Reprod 1991; 45: 2733.Google ScholarPubMed
41Wang, LJ, Pascoe, V, Petrucco, OM, Norman, RJ. Distribution of leukocyte subpopulations in the human corpus luteum. Hum Reprod 1992; 7: 196202.CrossRefGoogle ScholarPubMed
42Brannstrom, M, Pascoe, V, Norman, RJ, McClure, N. Localization of leukocyte subsets in the follicle wall and in the corpus luteum throughout the human menstrual cycle. Fertil Steril 1994; 61: 488–95.CrossRefGoogle Scholar
43Lei, ZM, Chegini, N, Rao, CV. Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biol Reprod 1991; 44: 1148–56.CrossRefGoogle ScholarPubMed
44Alders, RG, Shelton, JN. Lymphocyte subpopulations in lymph and blood draining from the uterus and ovary in sheep. J Reprod Immunol 1990; 17: 2740.CrossRefGoogle ScholarPubMed
45Brannstrom, M. In vitro perfused rat ovary. In: Methods in toxicology, Volume 3B. New York: Academic Press, 1993.Google Scholar
46Hallberg, P, Thomsen, P, Janson, PO, Brannstrom, M. Leukocyte supplementation increases the luteinizing hormone-induced ovulation rate in the in vitro-perfused rat ovary. Biol Reprod 1991; 44: 791–7.CrossRefGoogle Scholar
47Brannstrom, M, Bonello, N, Norman, RJ, Robertson, SA. Brief communication: reduction of ovulation rate in the rat by administration of a neutrophil-depleting monoclonal antibody. J Reprod Immunol 1995; 29: 265–70.CrossRefGoogle Scholar
48Chun, SY DI, Calman, D, Tsafriri, A. Severe leukocyte depletion does not affect follicular rupture in the rat. Biol Reprod 1993; 48: 905–9.CrossRefGoogle Scholar
49van Rooijen, N, van Nieuwmegen, R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethyiene diphosphonate an enzyme-histochemical study. Cell Tissue Res 1984; 238: 355–8.CrossRefGoogle ScholarPubMed
50Metcalf, D. Control of granulocytes and macrophages: molecular, cellular and clinical aspects. Science 1991; 254: 529–3.CrossRefGoogle ScholarPubMed
51Wiktor-Jedrzejczak, W, Gordon, S. Cytokine regulation of the macrophage (Mo) system using the colony stimulating factor-1-deficient op/op mouse. Physiol Rev 1996; 76: 927–47.CrossRefGoogle Scholar
52Wiktor-Jedrzejczak, W, Bartocci, A, Ferrante, A, Ahmed-Ansari, A, Sell, KW, Pollard, JW, Stanley, ER. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 1990; 87: 4828–32.CrossRefGoogle ScholarPubMed
53Stanley, ER BK, Einstein, DB, Lee, PSW, Pixley, FJ, Wang, Y, Yeung, YG. Biology and action of colony stimulating factor 1. Mol Reprod Dev 1997; 46: 410.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
54Araki, M FY, Kababuchi, H, Schultz, LD, Takahashi, K, Okamura, H. Follicular development and ovulation in macrophage colony stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation. Biol Reprod 1996; 54: 478–84.CrossRefGoogle ScholarPubMed
55Katabuchi, H Fy, Araki, M, Suenaga, Y, Ohtake, H, Okamura, H. Role of macrophages in ovarian follicular development. Horm Res (Basel) 1996; 46 (Supplement 1): 4551.CrossRefGoogle ScholarPubMed
56Arid, AOE, Bukulmez, O, Buradagunta, S, Engin, O, Olive, DL. Interleukin 8 expression and modulation in human preovulatory follicles and ovarian cells. Endocrinology 1996; 137: 3762–9.Google Scholar
57Kasson, BG, Gorosope, WC. Effects of interleukins 1, 2 and 3 on follicle-stimulating hormone-induced differentiation of rat granulosa cells. Mol Cell Endocrinol 1989; 2: 2492–6.Google Scholar
58Mikuni, M. Effect of interleukin-2 and interleukin-6 on ovary in the ovulatory period - establishment of the new ovarian perfusion system and influence of interleukins on ovulation rate and steroid secretion. Hokkaido Igaku Zasshi 1995; 70: 561–72.Google ScholarPubMed
59Hurwitz, A, Payne, DW, Packman, JN et al. Cytokine-mediated regulation of ovarian function: interleukin-1 inhibits gonadotropin-induced androgen biosynthesis. Endocrinology 1991; 129: 1250–6.CrossRefGoogle ScholarPubMed
60Hurwitz, A, Loukides, J, Ricciarelli, E et al. Human intraovarian interleukin-1 (IL-1) system: highly compartmentalized and hormonally dependent regulation of the genes encoding IL-1, its receptor, and its receptor antagonist. J Clin Invest 1992; 89: 1746–54.CrossRefGoogle ScholarPubMed
61Hurwitz, A, Dushnik, M, Solomon, H et al. Cytokine-mediated regulation of rat ovarian function: interleukin-1 stimulates the accumulation of a 92-kilodalton gelatinase. Endocrinology 1993; 132: 2709–14.CrossRefGoogle ScholarPubMed
62Hurwitz, A, Lavy, Y, Finci-Yeheskel, Z et al. Interleukin-1-mediated stimulation of prostaglandin E production is without effect on plasminogen activity in human granulosa lutein cell cultures. J Clin Endocrinol Metab 1995; 80: 3018–24.Google ScholarPubMed
63Adashi, EY. Immune modulators in the context of the ovulatory process - a role for interleukin-1. Am J Reprod Immunol 1996; 35: 190–4.CrossRefGoogle ScholarPubMed
64Terranova, PF, Roby, KF, Sancho-Tello, M, Weed, J, Lyles, R. TNFα alters thecal and granulosal cell steroidogenesis. In: Gibori, G ed. Signalling mechanisms and gene expression in the ovary. Norwell, MA: Serono Press, 1991: 178–89.CrossRefGoogle Scholar
65Yan, Z, Hunter, V, Weed, J, Hutchinson, S, Lyles, R, Terranova, P. Tumor necrosis factor-α alters steroidogenesis and stimulates proliferation of human ovarian granulosal cell. in vitro. Fertil Steril 1993; 59: 332–8.CrossRefGoogle Scholar
66Zachow, RJ, Tash, JS, Terranova, PF. Tumor necrosis factor-alpha attenuation of luteinizing hormone-stimulated androstenedione production by ovarian theca-interstitial cells: inhibition at loci within the adenosine 3′,5′-monophosphatedependent signaling pathway. Endocrinology 1993; 133: 2269–76.CrossRefGoogle ScholarPubMed
67Brannstrom, M, Norman, RJ, Seamark, RF, Robertson, SA. Rat ovary produces cytokines during ovulation. Biol Reprod 1994; 50: 8894.CrossRefGoogle ScholarPubMed
68Best, CL, Griffin, PM, Hill, JA. Interferon gamma inhibits luteinized human granulosa cell steroid productio. in vitro. Am J Obstet Gynecol 1995; 172: 1505–10.CrossRefGoogle Scholar
69Grasso, G, Asano, A, Minagawa, T, Tanaka, T, Fujimoto, S, Muscettola, M. Immunohistochemical localization of interferon-gamma in normal human ovary. Gynecol Endocrinol 1994; 8: 161–8.CrossRefGoogle ScholarPubMed
70Hill, JA, Welch, WR, Fans, HMP, Anderson, DJ. Induction of class II major histocompatibility complex antigen expression in human granulosa cells by interferon gamma: a potential mechanism contributing to autoimmune ovarian failure. Am J Obstet Gynecol 1990; 162: 534–40.CrossRefGoogle ScholarPubMed
71Simon, C, Tsafiri, A, Pellicier, A, Polan, ML. The role of interleukins in the ovary. Reprod Med Rev 1997; 5: 5163.CrossRefGoogle Scholar
72Brannstrom, M, Wang, L, Norman, RJ. Ovulatory effect of interleukin-1B on the perfused rat ovary. Endocrinology 1993; 132: 399404.CrossRefGoogle Scholar
73Takehara, Y, Dharmarajan, AM, Kaufman, G, Wallach, EE. Effect of interleukin-1b on ovulation in the in vitro perfused rabbit ovary. Endocrinology 1994; 134: 1788–93.CrossRefGoogle Scholar
74Kokia, E, Ben-Shlomo, I, Adashi, EY. The ovarian action of interleukin-1 is receptor mediated: reversal by a naturally occurring interleukin-1 receptor antagonist. Fertil Steril 1995; 63: 176–81.CrossRefGoogle ScholarPubMed
75Simon, CTA, Chun, SY, Piquette, GN, Dang, W, Polan, ML. Interleukin 1 receptor antagonist suppresses human chorionic gonadotropininduced ovulation in the rat. Biol Reprod 1994: 51: 662–7.CrossRefGoogle ScholarPubMed
76Kol, S, Ben-Shlomo, I, Ruutianen, K et al. The mid-cycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. J. Clin Invest 1997; 99: 2274–83.CrossRefGoogle Scholar
77Kodia, E, Hurwitz, A, Ricciarelli, E et al. Interleukin-1 stimulates ovarian prostaglandin biosynthesis: evidence for heterologous contactindependent cell-cell interaction. Endocrinology 1992; 130: 3095–7.Google Scholar
78Kol, S, Ben-Shlomo, I, Ruutianen, K et al. The mid-cycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. J. Clin Invest 1997; 99: 2274–83.CrossRefGoogle Scholar
79Cannon, JG, Dinarello, CA. Increased plasma interleukin-1 activity in women after ovulation. Science 1985; 227: 1247–9.CrossRefGoogle ScholarPubMed
80Wang, L-JBM, Cui, K-H, Simula, AP, Hart, RP, Maddocks, S, Norman, RJ. Localisation of mRNA for interleukin 1 receptor and interleukin 1 receptor antagonist in the rat ovary. J Endocrinol 1997; 152: 1117.CrossRefGoogle ScholarPubMed
81Machelon, V, Nome, F, Durand-Gasselin, I, Emilie, D. Macrophage and granulosa interleukin-1 beta mRNA in human ovulatory follicles. Hum Reprod 1995; 10: 2198–203.CrossRefGoogle ScholarPubMed
82Simon, C, Frances, A, Piquette, G, Polan, ML. Immunohistochemical localisation of the interleukin-1 system in the mouse ovary follicular growth, ovulation and luteinization. Biol Reprod 1994; 50: 449–57.CrossRefGoogle ScholarPubMed
83Brannstrom, M, Bonello, N, Wang, LJ, Norman, RJ. Effects of tumour necrosis factor α (TNFα) on ovulation in the rat ovary. Reprod Fertil Dev 1995; 7: 6773.CrossRefGoogle ScholarPubMed
84Wang, LJ, Brannstrom, M, Robertson, SA, Norman, RJ. Tumor necrosis factor α in the human ovary: presence in follicular fluid and effects on cell proliferation and prostaglandin production. Fertil Steril 1992; 48: 934–40.CrossRefGoogle Scholar
85Taylor, CC, Terranova, PF. Lipopolysaccharide inhibits rat ovarian thecal-interstitial cell steroid secretio. in vitro. Endocrinology 1995; 136: 5527–32.CrossRefGoogle Scholar
86Chen, HL, Marcinkiewicz, JL, Sancho-Tello, M, Hunt, JS, Terranova, PF. Tumor necrosis factoralpha gene expression in mouse oocytes and follicular cells. Biol Reprod 1993; 48: 707–14.CrossRefGoogle ScholarPubMed
87Marcinkiewicz, JL, Krishna, A, Cheung, CMY, Terranova, PF. Oocytic tumor necrosis factor alpha: localization in the neonatal ovary and throughout follicular development in the adult rat. Biol Reprod 1994; 50: 1251–60.CrossRefGoogle ScholarPubMed
88Hehnke-Vagnoni, KE, Clark, CL, Taylor, MJ, Ford, SP. Presence and localization of tumor necrosis factor alpha in the corpus luteum of nonpregnant and pregnant pigs. Biol Reprod 1995; 53: 1339–44.CrossRefGoogle ScholarPubMed
89Zhao, Y, Rong, H, Chegini, N. Expression and selective cellular localization of granulopyte-macrophage colony-stimulating factor (GM-CSF) and GM-CSF alpha and beta receptor messenger ribonucleic acid and protein in human ovarian tissue. Biol Reprod 1995; 53: 923–30.CrossRefGoogle ScholarPubMed
90Jasper, M, Brannstrom, M, Olofsson, JI, Petrucco, OM, Mason, H, Robertson, SA, Norman, RJ. Granulocyte-macrophage colony-stimulating factor: presence in human follicular fluid, protein secretion and mRNA expression by ovarian cells. Mol Human Reprod 1996; 2: 555–62.CrossRefGoogle ScholarPubMed
91Machelon, V, Emilie, D, Lefevre, A, Nome, F, Durand-Gasselin, I, Testart, J. Interleukin-6 biosynthesis in human preovulatory follicles: some of its potential roles at ovulation. J Clin Endocrinol Metab 1994; 79: 633–42.Google ScholarPubMed
92Machelon, V, Gougeon, A, Duquenne, C et al. Ovarian production of IL6 and its potential inhibitory effect on progesterone secretion in Cynomolgus fascicularis. C R Acad Sci III 1995; 318: 1111–8.Google ScholarPubMed
93Smith, WB, Gamble, JR, Clark-Lewis, I, Vadas, MA. Chemotactic desensitization of neutrophils demonstrates interleukin-8 (IL-8)-dependent and IL-8-independent mechanisms of transmigration through cytokine-activated endothelium. Immunology 1993; 78: 491–7.Google ScholarPubMed
94Chen, H, Marcinkiewicz, JL, Sancho-Tello, M, Hunt, JS, Terranova, PF. Tumor necrosis factor-α gene expression in mouse oocytes and follicular cells. Biol Reprod 1993; 48: 707–14.CrossRefGoogle ScholarPubMed
95Snyder, SH. Nitric oxide. No endothelial NO news; comment. Nature 1995; 377: 196–7.CrossRefGoogle Scholar
96Moncada, S, Higgs, A. The L-arginine-nitric oxide pathway. New Engl J Med 1993; 3292: 2002–12.Google Scholar
97Kubes, P, Suzuki, M, Granger, DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–5.CrossRefGoogle ScholarPubMed
98Anggård, E. Nitric oxide: mediator, murderer, and medicine. Lancet 1994; 343: 1199–206.CrossRefGoogle ScholarPubMed
99Zackrisson, UMM, Wallin, A, Delbro, D, Hedin, L, Brannstrom, M. Cell-specific localisation of nitric oxide synthases (NOS) in the rat ovary during follicular development, ovulation and luteal formation. Hum Reprod 1996; 11: 2667–73.CrossRefGoogle ScholarPubMed
100Bonello, N, McKie, K, Jasper, M et al. Inhibition of nitric oxide: effects on interleukin-I beta-enhanced ovulation rate, steroid hormones, and ovarian leukocytes distribution at ovulation in the rat. Biol Reprod 1996; 54: 436–45.CrossRefGoogle ScholarPubMed
101Ellman, C, Corbett, JA, Misko, TP, McDaniel, M, Beckerman, KP. Nitric oxide mediates interleukin-1-induced cellular cytotoxicity in the rat ovary. J Clin Invest 1993; 92: 3053–6.CrossRefGoogle ScholarPubMed
102Hesla, JS, Preutthipan, S, Maguire, MP, Chang, TSK, Wallach, EE, Dharmarajan, AM. Nitric oxide modulates hCG-induced ovulation in the rabbit. Fertil Steril 1997; 67: 548–52.CrossRefGoogle ScholarPubMed
103Olson, LM, Jonesburton, CM, Jablonkashariff, A. Nitric oxide decreases estradiol synthesis of rat luteinized ovarian cells - possible role for nitric oxide in functional luteal regression. Endocrinology 1996; 137: 3531–9.CrossRefGoogle ScholarPubMed
104Powers, RWCL, Russell, PT, Larsen, WJ. Gonadotropin-stimulated regulation of bloodfollicle barrier is mediated by nitric oxide. Am J Physiol 1995; 269: 290–8.Google ScholarPubMed
105Halme, J, Hammond, MG, Syrop, CH, Talbert, LM. Peritoneal macrophages modulate human granulosa-luteal cell progesterone production. J Clin Endocrinol Metab 1985; 61: 912–16.CrossRefGoogle ScholarPubMed
106Wang, L, Robertson, SA, Seamark, RF, Norman, RJ. Lymphokines, including interleukin-2, alter gonadotropin-stimulated progesterone production and proliferation of human granulosa-luteal cell. in vitro. J Clin Endocrinol Metab 1991; 72: 824–31.CrossRefGoogle Scholar
107Stark, JMNML. The influence of oestrone on the production of tumour necrosis factor by human peripheral blood adherent cells. FEMS Microbiol Immunol 1991; 3: 337–40.CrossRefGoogle ScholarPubMed
108Hsueh, AJ, Billig, H, Tsafiri, A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 194; 15: 707–24.Google Scholar
109Hsueh, AJ, Eisenhauer, K, Chun, SY, Hsu, SY, Billig, H. Gonadal cell apoptosis. Rec Prog Horm Res 1996; 51: 433–55.Google ScholarPubMed
110Hsueh, AJW, Billig, H. Control of follicle atresia in the ovary. Curr Opin Endocrinol Diabetes 1994; 192–9.CrossRefGoogle Scholar
111Funayama, YSH, Suzuki, T, Tamura, M, Fukay, AT, Yajima, A. Cell turnover in normal cycling human ovary. J Clin Endocrinol Metab 1996; 81: 828–34.Google ScholarPubMed
112Lynch, EA, Dinarello, CA, Cannon, JG. Gender differences in IL-lα, IL-1 β, and IL-1 receptor antagonist secretion from mononuclear cells and urinary excretion. J Immunol 1994; 153: 300–6.CrossRefGoogle Scholar
113Piquette, GN, Simón, C, el Danasouri, I, Frances, A, Polan, ML. Gene regulation of interleukin-1 beta, interleukin-1 receptor type I, and plasminogen activator inhibitor-1 and -2 in human granulosaluteal cells. Fertil Steril 1994; 62: 760–70.CrossRefGoogle ScholarPubMed
114Jasper, M, Norman, RJ. Immunoactive interleukin-1 beta and tumour necrosis factor alpha in thecal, stromal and granulosa cell cultures from normal and polycystic ovaries. Hum Reprod 1995; 10: 1352–4.CrossRefGoogle ScholarPubMed
115Zolti, M, Bider, D, Seidman, DS, Mashiach, S, Ben-Rafael, Z. Cytokine levels in follicular fluid of polycystic ovaries in patients treated with dexamethasone. Fertil Steril 1992; 57: 501–4.CrossRefGoogle ScholarPubMed
116Tozawa, H, Brannstrom, M, Petrucco, OM, Walker, S, Chambers, H, Pascoe, V, Norman, RJ. Distribution of leukocyte subtypes in the sheep ovary after laser drilling. Hum Reprod 1995; 10: 544–50.CrossRefGoogle ScholarPubMed
117Moncayo, HE, Moncayo, R. Perspectives on ovarian dysfunction and autoimmunity. Horm Metab Res 1995; 27: 544–6.CrossRefGoogle ScholarPubMed
118Moncayo, R, Moncayo, HE. Autoimmunity and the ovary. Immunol Today 1992; 13: 255–8.CrossRefGoogle ScholarPubMed
119Moncayo, R, Moncayo, H, Dapunt, O. Immunological risks of IVF. Lancet 1990; 1: 180.CrossRefGoogle Scholar
120Moncayo, H, Moncayo, R, Benz, R, Wolf, A, Lauritzen, C. Ovarian failure and autoimmunity: detection of autoantibodies directed against both the unoccupied luteinizing hormone/human chorionic gonadotropin receptor and the hormone-receptor complex of bovine corpus luteum. J Clin Invest 1989; 84: 1857–65.CrossRefGoogle ScholarPubMed
121Gleicher, N, Pratt, D, Dudkiewicz, A. What do we really know about autoantibody abnormalities and reproductive failure: a critical review. Autoimmunity 1993; 16: 115–40.CrossRefGoogle ScholarPubMed
122Hill, JA. Immunology and endometriosis. Fertil Steril 1992; 58: 262–4.CrossRefGoogle ScholarPubMed
123Cohen, PE, Zhu, L, Pollard, JW. Absence of colony stimulation factor-1 in osteopetrotic (csfmop/csfmop) mice disrupts estrous cycle and ovulation. Biol Reprod 1997; 56: 110–18.CrossRefGoogle ScholarPubMed
124Abbas, AK, Lichtman, AH, Pober, JS. In: Wonsiewicz, MJ ed. Cellular and molecular immunology. Philadelphia: WB Saunders, 1991: 24.Google Scholar
125Roitt, I, Brostoff, J, Male, D. In: Cook, L ed. Immunology, 4th edition. Barcelona: Mosby, Times Mirror International Publishers, 1996: 1.3.Google Scholar