Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:50:15.676Z Has data issue: false hasContentIssue false

Simulating scenarios for compost and vinasse use to improve the economics and environmental aspects of representative Colombian sugarcane production systems

Published online by Cambridge University Press:  15 May 2019

Diego Andrés Rueda-Ordóñez*
Affiliation:
Bioenergy Ph.D. Program, State University of Campinas (FEA/UNICAMP), Rua Monteiro Lobato, 80—Cidade Universitária, Campinas, Sao Paulo, Brazil
Manoel Regis L.V. Leal
Affiliation:
Interdisciplinary Center of Energy Planning (NIPE/UNICAMP), Rua Cora Coralina, 330, Cidade Universitária, Campinas, Sao Paulo, Brazil
Antonio Bonomi
Affiliation:
Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials (CTBE/CNPEM), Rua Giuseppe Máximo Scalfaro, 10000, Campinas, Sao Paulo, Brazil School of Chemical Engineering, State University of Campinas (FEQ/UNICAMP), 500 Albert Einstein Avenue, Cidade Universitária, Campinas, Sao Paulo, Brazil
Luís Augusto Barbosa Cortez
Affiliation:
Bioenergy Ph.D. Program, State University of Campinas (FEA/UNICAMP), Rua Monteiro Lobato, 80—Cidade Universitária, Campinas, Sao Paulo, Brazil
Otávio Cavalett
Affiliation:
Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials (CTBE/CNPEM), Rua Giuseppe Máximo Scalfaro, 10000, Campinas, Sao Paulo, Brazil
José M. Rincón
Affiliation:
Centro de desarrollo Industrial Tecsol, Carrera 71 No. 24-38 sur, Bogotá, Colombia
*
Author for correspondence: Diego Andrés Rueda-Ordoñez, E-mail: diego-andres66@hotmail.com

Abstract

The Colombian industrial sector is moving toward alternative forms of treatment of industrial waste, considering that the waste can be a source of raw material in the production chain. Thus, aiming at the decrease in mineral fertilizer use, and maintaining or even raising the crop yield, the sugarcane industry has recently advanced in the composting of the industrial waste and application in the field, both of them being potentially sustainable practices. This manuscript reports the economic benefits and the greenhouse gas (GHG) emissions related to the sugarcane production system in Colombia that has been simulated in this study to evaluate the beneficial effects of reusing industrial waste from ethanol production. This study was performed using the Virtual Sugarcane Biorefinery (VSB) modeling software for the simulation of agricultural and industrial parameters on integrated alternatives for the sugarcane industry. Colombian sugarcane sector was modeled using three scenarios representing agricultural systems that do not use composted industrial waste vs a paired scenario for each condition where composted waste is utilized. Regarding compost and vinasse use as fertilizer and soil conditioner, GHG emissions from the biogenic origin are not included as a reported item in the matrix of GHG emissions of the sugarcane sector. Inputs for the economic and environmental assessment models are based on actual operational data from two mill sites, one located in the traditional sugarcane production region of Cauca River Valley and the other one, on the agricultural expansion region of Llanos Orientales. Here, we have found that the reuse of composted industrial waste is beneficial and provides an economic cost savings of 2–6% per year. However, it also results in an annual increase of 10–20% in the GHG emissions.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASOCAÑA (2016) Aspectos Generales del Sector Azucarero Colombiano 2015-2016: Informe Anual. ASOCAÑA. Available at http://www.asocaña.org.Google Scholar
Basanta, R, Delgado, MA, Martínez, JE, Vázquez, H and Vázquez, G (2007) Sostenibilidad Del Reciclaje De Residuos De La Agroindustria Azucarera: Una Revisión sustainable recycling of waste from sugarcane agroindustry: a review. Ciencia y Tecnologia Alimentaria 5, 293305.CrossRefGoogle Scholar
BIOENERGY (2015) Informe de Sostenibilidad Bioenergy 2014–2015. Bogota. Available at http://www.bioenergy.com.co/DocumentosPDF/INFORMEBIOENERGYFINAL24.11.2016.pdf.Google Scholar
BIOENERGY (2017) Producido, Bioenergy Noticias: Más de 15 millones de litros de ethanol. BIOENERGY. Available at http://www.bioenergy.com.co/SitePages/Noticia.aspx?IdElemento=38.Google Scholar
BNDES and CGEE (eds) (2008) Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável, BNDES and CGEE. doi:10.1017/CBO9781107415324.004.Google Scholar
Bohórquez, A, Puentes, YJ and Menjivar, JC (2014) Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Quality evaluation of compost produced from agro-industrial byproducts of sugar cane. Corpoica Ciencia y tecnología Agropecuaria 15, 7381.CrossRefGoogle Scholar
Bonomi, A, Cavalett, O, Da Cunha, M and Lima, M (2016) Virtual Biorefinery An Optimization Strategy for Renewable Carbon Valorization. Springer International Publishing. doi: 10.1007/978-3-319-26045-7.CrossRefGoogle Scholar
Buitrago, R and Belalcázar, LC (2013) Análisis del ciclo de vida para la producción de bioetanol en Colombia por medio de OpenLCA. Épsilon 21, 145156.Google Scholar
Cacuro, TA and Waldman, WR (2015) Cinzas da queima de biomassa: aplicações e potencialidades. Revista Virtual de Quimica 7, 21542165.CrossRefGoogle Scholar
Castañeda-Ayarza, JA and Cortez, LAB (2017) Final and B molasses for fuel ethanol production and some market implications. Renewable and Sustainable Energy Reviews 70, 10591065.CrossRefGoogle Scholar
Castañeda, TG and Romero, M (2012) Compostaje de subproductos de la agroindustria de palma de aceite en Colombia: estado del arte y perspectivas de investigación. Bogotá.Google Scholar
Cavalett, O, Chagas, M, Seabra, J and Bonomi, A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. The International Journal of Life Cycle Assessment 18, 647658.CrossRefGoogle Scholar
CENICAÑA (2014) Informe Anual 2014. Centro de Investigación de la Caña de Azúcar de Colombia, pp. 1164. doi: 10.1017/CBO9781107415324.004.Google Scholar
CENICAÑA (2015) CENICAÑA—Proceso de obtención de azúcar y etanol. CENICAÑA, p. 1. Available at http://www.cenicana.org/pop_up/fabrica/diagrama_obtencion.php.Google Scholar
CETESB (2015) Stillage—Criteria and Procedures for Agricultural Soil Application. São Paulo: CETESB. Available at https://cetesb.sp.gov.br/wp-content/uploads/2013/11/NTC-P4.231_Vinhaça_-Critérios-e-procedimentos-para-aplicação-no-solo-agrícola-3a-Ed-2a-VERSÃO.pdf.Google Scholar
CGEE (eds) (2011) Sustainability of Sugarcane Bioenergy. Centro de Gestão e Estudos Estratégicos (CGEE). Available at http://www.cgee.org.br/atividades/redirect/7724.Google Scholar
Chagas, MF et al. (2015) Environmental and economic impacts of different sugarcane production systems in the ethanol biorefinery Mateus. Biofuels, Bioproducts and Biorefining 6, 89106.Google Scholar
Consorcio CUE (2012) Estudio ACV—Impacto Ambiental. In Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia. Medellin: Banco Interamericano de Desarrollo (BID)—Ministerio de Minas y Energía, p. 203. Available at https://www.minminas.gov.co/documents/10180/488888/Capitulo_2_ACV_final.pdf/1b6d5aec-702c-40b5-ac0a-eb4a564dd72e.Google Scholar
Cortez, L (2010) Sugarcane Bioethanol R&D for Productivity and Sustainability. FAPESP, Blucher.Google Scholar
Cortez, L and Gómez, E (1998) A method for energy analysis of sugarcane bagasse boilers. Brazilian Journal of Chemical Engineering 15, 11.CrossRefGoogle Scholar
Cortez, L, Magalhaes, P and Happi, J (1992) Principais subprodutos da agroindústria canavieira e sua valorização. Sociedade Brasileira de Planejamento Energético Revista Brasileira de Energia 2, 117.Google Scholar
Damodaran, A (2012) Estimating discount rates. In Damodaran on Valuation: Security Analysis for Investment and Corporate Finance, 2nd Edn, pp. 166. doi:10.1111/j.1600-0404.1995.tb01704.x.CrossRefGoogle Scholar
FEDEBIOCOMBUCTIBLES (2017) Fedebiocombustibles, Precios de Alcohol Carburante (ethanol). FEDEBIOCOMBUCTIBLES. Available at http://www.fedebiocombustibles.com/v3/estadistica-precios-titulo-Alcohol_Carburante_(Etanol).htm (Accessed 19 April 2018).Google Scholar
Freire, W and Cortez, LAB (2000) Vinhaça de cana-de-açúcar. Embrapa, Amazônia Oriental.Google Scholar
García, A and Rojas, C (2005) Posibilidades de Uso de la Vinaza en la Agricultura de Acuerdo con su Modo de Acción en los Suelos. Tecnicaña 9, 38.Google Scholar
Goedkoop, M, Heijungs, R, Huijbregts, M, Schryver, A, Struijs, J and Zelm, R (2009) ReCipe 2008. Potentials. pp 132. Available at: https://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdfGoogle Scholar
Ingenio Providencia (2016) Procesos Ingenio Providencia. Cali. Available at http://www.ingprovidencia.com/wp-content/uploads/2016/05/Procesos_de_Ingenio_Providencia.pdf.Google Scholar
ISO (1998) ISO 14041:1998—environmental management––life cycle assessment—goal and scope definition—inventory analysis. International Organization for Standardization 3, 22.Google Scholar
Korndorfer, G, Nolla, A and Ailton, J (2010) Manejo, aplicación y valor fertilizante de la vinaza para caña de azúcar y otros cultivos. Tecnicaña 24, 2328.Google Scholar
Larrahondo, J (2009) La Vinaza: Caracterización de La Vinaza Usos y Aprovechamientos Potenciales. In Tecnicaña, Memorias Seminario Internacional de Fertilización y Nutrición de La Caña de Azúcar, edited by Tecnicaña, pp. 6990. 0104. Sena-Asocaña.Google Scholar
Libreros-Salamanca, S (2012) Compostaje de residuos industriales en Colombia. Revista Tecnicaña 28, 1520.Google Scholar
Milanez, A, Bonomi, A, Dayan, Ch, Nyko, D, Valente, M, Chagas, M, Rezende, M, Cavalett, O, Junqueira, T and Gouvêia, V (2015) De promessa a realidade : como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar uma avaliação do potencial competitivo e sugestões de política pública. Biocombustíveis BNDES setorial. pp. 237–294.Google Scholar
Molina, RM, Victoria, JAR and Saa, GR (2012) Efecto de la aplicación de compost en algunas propiedades químicas de un suelo Typic haplustoll en el Valle del Cauca, Colombia. Acta Agronomica 61(Spl. Iss.), 5960.Google Scholar
Moncada, J, El-Halwagi, MM and Cardona, CA (2013) Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresource Technology 135, 533543.CrossRefGoogle ScholarPubMed
Moore, CCS, Nogueira, AR and Kulay, L (2017) Environmental and energy assessment of the substitution of chemical fertilizers for industrial wastes of ethanol production in sugarcane cultivation in Brazil. The International Journal of Life Cycle Assessment 22, 628643.CrossRefGoogle Scholar
Moraes, B, Junqueira, T, Pavanello, L, Cavalett, O, Mantelatto, P, Bonomi, A and Zaiat, M (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Applied Energy 113, 825835.CrossRefGoogle Scholar
Mutton, A, Rossetto, R and Mutton, MJ (2010) Agricultural use of stillage. In Cortez, LAB (ed.), Sugarcane Bioethanol R&D for Productivity and Sustainability. São Paulo: Blucher & Fapesp, pp. 423440.Google Scholar
Oliveira, M, Dias, DS, Maciel, R, Eduardo, P, Cavalett, O, Eduardo, C, Rossell, V and Bonomi, A (2015) Sugarcane processing for ethanol and sugar in Brazil. Environmental Development 15, 3551.Google Scholar
Páez-Ortegón, G (2012) Control y monitoreo de las aguas subterráneas y suelos enfocado a la aplicación de vinazas en el Valle del Cauca-Colombia. In Seminario control de la Contaminación y protección de la calidad de suelos y aguas subterráneas enfoncado a la aplicación de fertilizantes obtenidos a partir de vinazas, p. 11. Available at http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342013000900019.Google Scholar
Paredes, A and Bermúdez, L (2009) Eficiencia energética enfocada al medio ambiente en el Ingenio Providencia S.A. Tecnicaña 21, 607611.Google Scholar
PECEGE (2016) Custos de Produção de cana-de-açúcar, açúcar, etanol e bioeletricidade no Brasil. Available at https://www.researchgate.net/publication/297407759.Google Scholar
Peña, JF (2009) Nutrición líquida de la caña de azúcar con vinurea. Tecnicaña—Capacitacion Técnica para la agroindustria 3336. doi: 10.1360/zd-2013-43-6-1064.Google Scholar
Pereira, L, Dias, M, MacLean, H and Bonomi, A (2015) Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries. Bioresource Technology 190, 242250.CrossRefGoogle ScholarPubMed
Pipatti, R, Silva, A, Joao, W, Gao, Q, López, C, Mareckova, K, Oonk, H, Scheehle, E, Sharma, Ch, Smith, A, Svardal, P and Yamada, M (2006) Tratamiento biológico de los desechos sólidos. Directrices del IPPC de 2006 para los inventarios nacionales de gases de efecto invernadero, pp. 19.Google Scholar
Pizano, M (2001) Alternatives to methyl bromide for use in cut-flower production. In Proceedings of International Conference on Alternatives to Methyl Bromide, pp. 8186. Available at https://ec.europa.eu/clima/sites/clima/files/docs/0039/cut_flower_prod_en.pdf.Google Scholar
Quintero, J, Montoya, M, Sánchez, O, Giraldo, O and Cardona, C (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy 33, 385399.CrossRefGoogle Scholar
Quiroz, I and Perez, A (2013) Vinaza y compost de cachaza: efecto en la calidad del suelo cultivado con caña de azúcar. Revista Mexicana de Ciencias Agricolas 5, 10691075.Google Scholar
Rincón, J, Vera, M, Guevara, P and Duarte, S (2017) Cofiring in Sugar Mills Industry in Colombia. VGB Power Tech, pp. 20152018.Google Scholar
Rossetto, R, Dias, F, Vitti, A and Cantarella, H (2014) Fertility maintenance and soil recovery in sugarcane crops. Sugarcane Bioethanol—R&B for Productivity and Sustainability, pp. 381404.CrossRefGoogle Scholar
Rueda Ordoñez, DA et al. (2018) Expansion assessment of the sugarcane and ethanol production in the Llanos Orientales region in Colombia. Biofuels, Bioproducts and Biorefining 116. doi: 10.1002/bbb.1898.Google Scholar
Sánchez, JH (2010) The discount rate in emerging countries-application of the Colombian case. Revista EAN 69, 120134.Google Scholar
Tarazona, G (2011) Manejo fitosanitario del cultivo de la caña panelera. Medidas para la temporada invernal, ICA, Línea Agrícola. Bogota: ICA. doi: 10.1017/CBO9781107415324.004.Google Scholar
XM (2015) Informe Seguimiento Cogeneradores Resolución CREG 05 de 2010. [Online]. Available: https://www.xm.com.co/Informe Cogeneradores/INFORME_COGENERADORES_ Enero_2013.pdfGoogle Scholar
Zúñiga Cerón, V and Gandini Ayerbe, MA (2013) Caracterización Ambiental De Las Vinazas De Residuos De Caña De Azúcar Resultantes De La Producción De Etanol. Dyna 177, 124131.Google Scholar