Skip to main content Accessibility help

How organic farmers practice conservation agriculture in Europe

  • Joséphine Peigné (a1), Marion Casagrande (a1), Vincent Payet (a1), Christophe David (a1), F. Xavier Sans (a2), José M. Blanco-Moreno (a2), Julia Cooper (a3), Kate Gascoyne (a3), Daniele Antichi (a4), Paolo Bàrberi (a5), Federica Bigongiali (a5), Andreas Surböck (a6), Andreas Kranzler (a6), Annelies Beeckman (a7), Koen Willekens (a8), Anne Luik (a9), Darja Matt (a9), Meike Grosse (a10), Juergen Heß (a10), Maurice Clerc (a11), Hansueli Dierauer (a11) and Paul Mäder (a11)...


The interest of organic farmers in adopting conservation agriculture principles, including minimal soil disturbance, permanent soil cover and crop rotation has been growing since the early 2000s. However, currently there is no network for organic farmers practicing conservation agriculture, and a lack of knowledge on how organic farmers implement conservation agriculture in practice. Consequently, few technical references are available for organic farmers when they start applying conservation agriculture practices, in particular on controlling weeds without the use of herbicides. The main objectives of this study were: (1) to explore the diversity of conservation agriculture techniques (i.e., reduced tillage, no-tillage and green manures) practiced among European farmers, and (2) to identify farmers’ main strategies for implementing conservation agriculture and the agronomic and environmental factors that determine these strategies. Strategies were identified by analyzing survey results on: (1) the type and degree of use of conservation agriculture practices by farmers, and (2) the effects it produces in terms of soil disturbance and soil cover (low, medium and high). We carried out a survey of 159 European organic farmers and collected 125 data sets on management of winter-sown crops. Among the conservation agriculture practices, reduced tillage was used by 89%, no-tillage by 27% and green manure by 74% of the 159 interviewed farmers. Green manures were more frequently used in northern Europe than in the south (below 45°N). Most of the farmers used crop rotations, with a mean duration of 6 years. A wide diversity of conservation agriculture practices were used, with farmers rarely using all three techniques (no-till, reduced till and green manures) within one system. The range of practices was grouped into five strategies ranging from intensive non-inversion tillage without soil cover to very innovative techniques with no-tillage and intercrops. The five strategies for conservation agriculture could be grouped into two larger categories based on weed control approach: (1) intensification of the mechanical work without soil inversion or (2) biological regulation of weeds with cover crops. The diversity of strategies identified in this study shows that organic farmers use innovative approaches to implement conservation agriculture without herbicides. This study's findings will help organic farmers to experiment with innovative practices based on conservation agriculture principles and also benefit conventional farmers who use conservation agriculture practices and would like to reduce or eliminate the use of herbicides.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How organic farmers practice conservation agriculture in Europe
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How organic farmers practice conservation agriculture in Europe
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How organic farmers practice conservation agriculture in Europe
      Available formats


Corresponding author

Corresponding author:,


Hide All
1Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R., and Rayns, F.W. 2002. Managing soil fertility in organic farming systems. Soil Use and Management 18:239247.
2Darnhofer, I., Bellon, S., Dedieu, B., and Milestad, R. 2010. Adaptiveness to enhance the sustainability of farming systems. A review. Agronomy for Sustainable Development 30:545555.
3Goldberger, J.R. 2011. Conventionalization, civic engagement, and the sustainability of organic agriculture. Journal of Rural Studies 27:288296.
4Best, H. 2008. Organic agriculture and the conventionalization hypothesis: A case study from West Germany. Agriculture and Human Values 25:95106.
5Kassam, A., Friedrich, T., Shaxson, F., and Pretty, J. 2009. The spread of Conservation Agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability 7(4):292320.
6Hobbs, P.R., Sayre, K., and Gupta, R. 2008. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences 363:543555.
7Holland, J.M. 2004. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems & Environment 103:125.
8Sapkota, T.B., Mazzoncini, M., Bàrberi, P., Antichi, D., and Silvestri, N. 2012. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agronomy for Sustainable Development 32:853863.
9Sans, F.X., Berner, A., Armengot, L., and Mäder, P. 2001. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Research 51:413–41.
10Fleury, P., Chazoule, C., and Peigné, J. 2014. Ruptures et transversalités entre agriculture biologique et agriculture de conservation. Économie rurale 339–340:95112 (in French).
11Lefèvre, V., Capitaine, M., Peigné, J., and Roger-Estrade, J. 2012. Soil conservation practices in organic farming: Overview of French farmers’ experiences and contribution to future cropping systems design. In Proceedings of the 10th European IFSA Symposium, Aarhus, Denmark.
12Peigné, J., Ball, B.C., Roger-Estrade, J., and David, C. 2007. Is conservation tillage suitable for organic farming? A review. Soil Use and Management 23:129144.
13Mäder, P. and Berner, A. 2012. Development of reduced tillage systems in organic farming in Europe. Renewable Agriculture and Food Systems 27:711.
14Casagrande, M., Peigné, J., Payet, V., Mäder, P., Sans, F.X., Blanco-Moreno, J.M., Antichi, D., Bàrberi, P., Beeckman, A., Bigongiali, F., Cooper, J., Dierauer, H., Gascoyne, K., Grosse, M., Heß, J., Kranzler, A., Luik, A., Peetsmann, E., Surböck, A., Willekens, K., and David, C. 2014. Organic farmers in Europe: motivations and problems for using conservation agriculture practices. In G. Rahmann and U. Aksoy (eds). Proceedings of the 4th of ISOFAR Scientific Conference at the Organic World Congress, October 13–15, Istanbul, Turkey. Thünen Report 20, Braunschweig, Germany. Vol. 1, p. 295–298.
15Berner, A., Hildermann, I., Fliesbach, A., Pfiffner, L., Niggli, U., and Mäder, P. 2008. Crop yield and soil fertility response to reduced tillage under organic management. Soil and Tillage Research 101:8996.
16Peigné, J., Cannavaciuolo, M., Gautronneau, Y., Aveline, A., Giteau, J.L., and Cluzeau, D. 2009. Earthworm populations under different tillage systems in organic farming. Soil and Tillage Research 104:207214.
17Vian, J.F., Peigné, J., Chaussod, R., and Roger-Estrade, J. 2009. Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use and Management 25:110.
18Krauss, M., Berner, A., Burger, D., Wiemken, A., Niggli, U., and Mäder, P. 2010. Reduced tillage in temperate organic farming: Implications for crop management and forage production. Soil Use and Management 26:1220.
19Carr, P.M., Anderson, R.L., Lawley, Y.E., Miller, P.R., and Zwinger, S.F. 2012. Organic zero-till in the northern US Great Plains Region: Opportunities and obstacles. Renewable Agriculture and Food Systems 27:1220.
20Tenenhaus, M., and Young, F.W. 1985. An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika 50:91119.
21, S., Josse, J., and Husson, F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25:118.
22López-Garrido, R., Madejón, E., Murillo, J.M., and Moreno, F. 2011. Soil quality alteration by mouldboard ploughing in a commercial farm devoted to no-tillage under Mediterranean conditions. Agriculture, Ecosystems & Environment 140:182190.
23Melero, S., Panettieri, M., Madejón, E., Macpherson, H.G., Moreno, F., and Murillo, J.M. 2011. Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil and Tillage Research 112:107113.
24Dimassi, B., Cohan, J.-P., Labreuche, J., and Mary, B. 2013. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agriculture, Ecosystems & Environment 169:1220.
25Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., and Roger-Estrade, J. 2012. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage and Research 118:6687.
26Bond, W., and Grundy, A.C. 2001. Non-chemical weed management in organic farming systems. Weed Research 41:383405.
27Bàrberi, P. 2002. Weed management in organic agriculture: Are we addressing the right issues? Weed Research 42:177193.
28Gadermaier, F., Berner, A., Fließbach, A., Friedel, J.K., and Mäder, P. 2012. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renewable Agriculture and Food Systems 27:6880.
29Kuntz, M., Berner, A., Gattinger, A., Scholberg, J.M., Mäder, P., and Pfiffner, L. 2013. Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 56:251260.
30Peigné, J., Védie, H., Demeusy, J., Gerber, M., Vian, J.F., Gautronneau, Y., Cannavaccuiolo, M., Aveline, A., Giteau, J.L., and Berry, D. 2009. Techniques sans labour en agriculture biologique. Innovations Agronomiques 4:2332.
31Armengot, L., Berner, A., Blanco-Moreno, J.M., Mäder, P., and Sans, F.X. 2014. Long-term feasibility of reduced tillage in organic farming. Agronomy for Sustainable Development. doi: 10.1007/s13593-014-0249-y.
32Peigné, J., Messmer, M., Aveline, A., Berner, A., Mäder, P., Carcea, M., Narducci, V., Samson, M.F., Thomsen, I.K., Celette, F., and David, C. 2013. Wheat yield and quality as influenced by reduced tillage in organic farming. Organic Agriculture 4:113.
33Carozzi, M., Ferrara, R.M., Rana, G., and Acutis, M. 2013. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands. Science of the Total Environment 449:126133.
34Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mäder, P., Stolze, M., El-Hage Scialabbad, N., and Niggli, U. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences of the United States of America 109:1822618231.
35Teasdale, J.R., Rice, C.P., Cai, G., and Mangum, R.W. 2012. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecology 213:18931905.
36Scholberg, J.M.S., Dogliotti, S., Leoni, C., Cherr, C.M., Zotarelli, L., and Rossing, W.A.H. 2010. Cover crops for sustainable agrosystems in the Americas. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews 4:2358.
37Amossé, C., Jeuffroy, M.-H., Celette, F., and David, C. 2013. Relay-intercropped forage legumes help to control weeds in organic grain production. European Journal of Agronomy 49:158167.
38Corre-Hellou, G., Dibet, A., Hauggaard-Nielsen, H., Crozat, Y., Gooding, M., Ambus, P., and Jensen, E.S. 2011. The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Research 122:264272.
39Thorsted, M.D., Weiner, J., and Olesen, J.E. 2006. Above- and below-ground competition between intercropped winter wheat Triticum aestivum and white clover Trifolium repens. Journal of Applied Ecology 43:237245.
40Hiltbrunner, J., Liedgens, M., Bloch, L., Stamp, P., and Streit, B. 2007. Legume cover crops as living mulches for winter wheat: Components of biomass and the control of weeds. European Journal of Agronomy 26:2129.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed