Skip to main content Accessibility help
×
Home

Perspective de la plate-forme NEMOSIS dans le cadre d’une réduction de doses en imagerie

  • R. Laurent (a1), R. Gschwind (a1), M. Salomon (a2), J. Henriet (a1) and L. Makovicka (a1)...

Abstract

L’acquisition du mouvement est de plus en plus souvent effectuée pour améliorer la balistique des traitements en radiothérapie externe. Cependant, elle est source d’une exposition supplémentaire pour le patient. Le développement de la plate-forme de simulation numérique NEMOSIS (NEural NEtwork MOtion SImulation System) ouvre la voie à l’optimisation de la dose en imagerie. Elle permet de générer un mouvement pulmonaire localisé et personnalisé à partir du modèle 3D du patient. Pour 3 patients test, 5 à 6 points anatomiques ont été simulés puis comparés aux tracés du radiothérapeute. Dans le cas le plus défavorable, les résultats ont montré une précision moyennée sur l’ensemble des points d’un patient et sur toutes les phases d’environ 3 mm avec une incertitude élargie de tracé égale à 1,5 mm (intervalle de confiance de 95 %) et une incertitude maximale de phase atteignant 6,53 mm. Une autre étude comparant les GTV ( Gross Tumor Volume) d’un radiothérapeute et ceux calculés par NEMOSIS a été également menée. Un indice de Dice stipulant une correspondance minimale de 0,80 a été calculé entre les deux types de volumes. Ces résultats font de NEMOSIS un outil très prometteur en tant qu’alternative aux imageries irradiantes.

Copyright

References

Hide All
[1]Boldea V. (2006) Intégration de la respiration en radiothérapie : apport du recalage déformable d'images, Thèse de doctorat en informatique, Université Lumière Lyon 2.
[2]Davies, S.C., Hill, A.L., Holmes, R.B., Halliwell, M., Jackson, P.C. (1994) Ultrasound quantitation of respiratory organ motion in the upper abdomen, Br. J. Radiol. 67 (803), 1096-1102.
[3]Ehrhardt, J., Werner, R., Säring, D., Frenzel, T., Lu, W., Low, D.A., Handels, H. (2007) An optical flow based method for improved reconstruction of 4DCT data sets acquired during free breathing, Medical Physics 34 (2), 711-721.
[4]Eom, J., Xu, X.G., De, S., Shi, C. (2010) Predictive modeling of lung motion over the entire respiratory cycle using measured pressure-volume data, 4DCT images, and finite-element analysis, Med. Phys. 37 (8), 4389-4400.
[5]Ford, E.C., Mageras, G.S., Yorke, E., Rosenzweig, K.E., Wagman, R., Ling, C.C. (2002) Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging, Int. J. Radiat. Oncol. Biol. Phys. 52 (2), 522-531.
[6]Giraud, P., De Rycke, Y., Dubray, B., Helfre, S., Voican, D., Guo, L., Rosenwald, J.C., Keraudy, K., Housset, M., Touboul, E., Cosset, J.M. (2001) Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing, Int. J. Radiat. Oncol. Biol. Phys. 51 (4), 1081-1092.
[7]Hanley, J., Debois, M.M., Mah, D., Mageras, G.S., Raben, A., Rosenzweig, K.E., Mychalczak, B., Schwartz, L.H., Gloeggler, P.J., Lutz, W., Ling, C.C., Leibel, S.A., Fuks, Z., Kutcher, G.J. (1999) Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation, Int. J. Radiat. Oncol. Biol. Phys. 45 (3), 603-611.
[8]Hostettler A., Nicolau S.A., Forest C., Soler L., Rémond Y. (2006) Real-time simulation of organ motions induced by breathing: First evaluation on patient data. In: ISBMS, Vol. 4072 of LNCS, pp. 9-18.
[9]Hostettler A., Nicolau S., Soler L., Rémond Y., Marescaux J. (2008) A real-time predictive simulation of abdominal organ positions induced by free breathing. In: Biomedical Simulation, Springer Berlin / Heidelberg (Bello F., Edwards P., Eds), Vol. 5104 of LNCS, pp. 89-97.
[10] Johnston, E., Diehn, M., Murphy, J.D., Loo, B.W. Jr, Maxim, P.G. (2011) Reducing 4DCT artifacts using optimized sorting based on anatomic similarity, Med. Phys. 38 (5), 2424-2429.
[11]Laurent, R., Henriet, J., Gschwind, R., Makovicka, L. (2010) A morphing technique applied to lung motions in radiotherapy: preliminary results, Acta Polytechnica 50 (6), 57-65.
[12]Laurent, R., Henriet, J., Salomon, M., Sauget, M., Nguyen, F., Gschwind, R., Makovicka, L. (2011) Simulation of lung motions using an artificial neural network, Cancer Radiothérapie 15 (2), 123-129.
[13]Laurent, R., Henriet, J., Salomon, M., Sauget, M., Gschwind, R., Makovicka, L. (2012) Respiratory lung motion using an artificial neural network, Neural Comput. Applic. 21 (5), 929-934, DOI:10.1007/s00521-011-0727-y.
[14]Liu, H.H., Balter, P., Tutt, T., Choi, B., Zhang, J., Wang, C., Chi, M., Luo, D., Pan, T., Hunjan, S., Starkschall, G., Rosen, I., Prado, K., Liao, Z., Chang, J., Komaki, R., Cox, J.D., Mohan, R., Dong, L. (2007) Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer, Int. J. Radiat. Oncol. Biol. Phys. 68 (2), 531-540.
[15]Louie, A.V., Rodrigues, G., Olsthoorn, J., Palma, D., Yu, E., Yaremko, B., Ahmad, B., Aivas, I., Gaede, S. (2010) Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era, Radiother. Oncol. 95 (2), 166-171.
[16]Low, D.A., Parikh, P.J., Lu, W., Dempsey, J.F., Wahab, S.H., Hubenschmidt, J.P., Nystrom, M.M., Handoko, M., Bradley, J.D. (2005) Novel breathing motion model for radiotherapy, Int. J. Radiat. Oncol. Biol. Phys 63 (3), 921-929.
[17]Low, D.A., Nystrom, M., Kalinin, E., Parikh, P., Dempsey, J.F., Bradley, J.D., Mutic, S., Wahab, S.H., Islam, T., Christensen, G., Politte, D.G., Whiting, B.R. (2003) A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing, Med. Phys. 30 (6), 1254-1263.
[18]Murphy, M.J., Martin, D., Whyte, R., Hai, J., Ozhasoglu, C., Le, Q.T. (2002) The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery, Int. J. Radiat. Oncol. Biol. Phys. 53 (2), 475-482.
[19]Persson, G.F., Nygaard, D.E., Brink, C., Jahn, J.W., Rosenschöld, P.M., Specht, L., Korreman, S.S. (2010) Deviations in delineated GTV caused by artefacts in 4DCT, Radiother. Oncol. 96 (1), 61-66.
[20]Redmond, K.J., Song, D.Y., Fox, J.L., Zhou, J., Rosenzweig, C.N., Ford, E. (2009) Respiratory motion changes of lung tumors over the course of radiation therapy based on respiration-correlated four-dimensional computed tomography scans, Int. J. Radiat. Oncol. Biol. Phys. 75 (5), 1605-1612.
[21]Rietzel, E., Pan, T., Chen, G.T.Y. (2005) Four-dimensional computed tomography: Image formation and clinical protocol, Med. Phys. 32 (4), 874-889.
[22]Sarker, J., Chu, A., Mui, K., Wolfgang, J.A., Hirsch, A.E., Chen, G.T.Y., Sharp, G.C. (2010) Variations in tumor size and position due to irregular breathing in 4D-CT: A simulation study, Med. Phys. 37, 3, 1254-1260.
[23]Simon L. (2006) Etude comparative et mise en œuvre clinique de deux systèmes de radiothérapie asservie à la respiration, Thèse de doctorat de physique radiologique et médicale, Université de Paris XI - Faculté de Médecine de Paris-Sud.
[24]Vandemeulebroucke J., Sarrut D., Clarysse P. (2007) The popi-model, a point-validated pixel-based breathing thorax model. In: XVth International Conference on the Use of Computers in Radiation Therapy (ICCR 2007), Toronto, Canada, 4-7 June.
[25]Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D. (2011) Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs, Med. Phys. 38 (1), 166-178.
[26] Van de Steene, J., Van den Heuvel, F., Bel, A., Verellen, D., De Mey, J., Noppen, M., De Beukeleer, M., Storme, G. (1998) Electronic portal imaging with on-line correction of setup error in thoracic irradiation: clinical evaluation, Int. J. Radiat. Oncol. Biol. Phys. 40 (4), 967-976.
[27]Villard P.F. (2006) Simulation du Mouvement Pulmonaire pour un Traitement Oncologique, Thèse de doctorat en informatique n°165-2006, Université Claude Bernard.
[28] Yamamoto, T., Langner, U., Loo, B.W. Jr, Shen, J., Keall, P.J. (2008) Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients, Int. J. Rad. Oncol. Biol. Phys. 72 (4), 1250-1258.
[29]Yang, D., Lu, W., Low, D.A., Deasy, J.O., Hope, A.J., El Naqa, I. (2008) 4DCT motion estimation using deformable image registration and 5D respiratory motion modeling, Med. Phys. 35 (10), 4577-4590.
[30]Zeng, R., Fessler, J.A., Balter, J.M., Balter, P.A. (2008) Iterative sorting for four dimensional CT images based on internal anatomy motion, Med. Phys. 35 (3), 917-926.
[31] Zhao, T., Lu, W., Yang, D., Mutic, S., Noel, C.E., Parikh, P.J., Bradley, J.D., Low, D.A. (2009) Characterization of free breathing patterns with 5D lung motion model, Med. Phys. 36 (11) , 5183-5189.

Keywords

Related content

Powered by UNSILO

Perspective de la plate-forme NEMOSIS dans le cadre d’une réduction de doses en imagerie

  • R. Laurent (a1), R. Gschwind (a1), M. Salomon (a2), J. Henriet (a1) and L. Makovicka (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.