Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T21:36:34.767Z Has data issue: false hasContentIssue false

Key mechanisms for tritium transfer in the terrestrial environment

Published online by Cambridge University Press:  08 March 2013

PH. Guetat*
Affiliation:
CEA, Cabinet du HC, CEA siège, 91191 Gif-sur-Yvette, France
Get access

Abstract

During an accidental release of tritium, mechanisms of hydrogen transfer from air to man are very numerous, dependent on multiple climate, physiological and biological parameters, and the kinetic is highly variable from one environmental compartment to another. To evaluate the impact of an acute tritium release requires either an overall assessment of the state of the environment during the release and the following hours from a number of restricted data, or the establishment of a significant data bank, a complex model and a system of data acquisition in real time whose potential for daily purposes is very hypothetical. To facilitate the first approach, this paper discusses the key elements of the mechanisms to guide the choice of parameters for a rapid assessment of the situation, and to clarify the types of measurements to carry out and their interpretation.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, P.J., Watkins, B.M., Belot, Y., Davis, P.A., Edlund, O., Galeriu, D., Raskob, W., Russell, S., Togawa, O. (1999) Intercomparison of model predictions of tritium concentrations in soil and foods following acute airborne HTO exposure, J. Environm. Radioact. 42, 191-207. Google Scholar
Belot, Y., Gauthier, D., Camus, H., Caput, Cl. (1979) Prediction of the flux of tritiated water from air to plant leaves, Health Phys. 37, 575-583. Google ScholarPubMed
Belot Y., Roy M., Metivier H. et al. (1996) Le tritium de l’environnement à l’homme IPSN. Éditions de Physique, Paris.
Boyer, C., Vichot, L., Fromm, M., Losset, Y., Tatin-Frouxa, F., Guétat, Ph., Badot, P.M. (2009) Tritium in plants: A review of current knowledge, Environm. Experim. Botany 67, 34-51. Google Scholar
DeVol, T.A., Powell, B.A. (2004) Thorical organically bound tritium dose estimates, Health Phys. 86, 183-186. Google ScholarPubMed
Diabaté, S., Honig, D. (1988) Conversion of molecular tritium to HTO and OBT in plants and soils, Fusion Technol. 14, 1235-1239. Google Scholar
Feinhals, J., Bunnennberg, C. (1988) Laboratory investigations of HTO deposition to soils, Fusion Technol. 14, 1253-1257. Google Scholar
Galeriu, D., Crout, N.M.J., Melintescu, A., Beresford, N.A., Peterson, S.-R., Van Hess, M. (2001) Metabolic derivation of tritium transfer factors in animal products, Rad. Environm. Biophys. 40, 325-334. Google Scholar
Galeriu, D., Melintescu, A., Beresford, N.A., Crout, N.M.J., Peterson,, R., Takeda, H. (2007) Modelling 3H and 14C transfer to farm animals and their products under steady state conditions, J. Environm. Radioact. 98 (1-2), 205-217. Google ScholarPubMed
Galeriu, D., Davis, Ph., Raskob, W., Mellintescu, A. (2008) Tritium radioecology and dosimetry – Today and tomorrow, Fusion Sci. Technol. 54 (1), 237-243. Google Scholar
Galeriu, D., Melintescu, A., Beresford, N.A., Takeda, H., Crout, N.M.J. (2009) The dynamic transfer of 3H and 14C in mammals: a proposed generic model, Radiat. Environ. Biophys. 48 (1), 29-45. Google Scholar
Galeriu, D., Melintescu, A. (2011) A model approach for tritium dynamics in wild mammals, Radioprotection 46 (6), S445-S451. Google Scholar
Garland, J.A., Ameen, M. (1979) Incorporation of tritium in grain plants, Health Phys. 36, 35-38. Google ScholarPubMed
Guenot, J., Belot, Y. (1984) Assimilation of 3H in photosynthesizing leaves exposed to HTO, Health Phys. 47, 849-855. Google ScholarPubMed
Guetat, Ph., Patryl, L. (2004) Analysis of the consequences of an acute atmospheric release of tritium, “Tritium 2004 baden-baden”, Fusion Sci. Technol. 48 (1), 441-444. Google Scholar
Guetat, Ph., Patryl, L. (2008) Environmental and radiological impact of accidental tritium release- “Tritium 2007 Rochester”, Fusion Sci. Technol. 54 (1), 273-276. Google Scholar
Guetat, Ph., Douche, C., Hubinois, J.C. (2008) Le tritium et l’environnement : sources, mesures et transferts, Radioprotection 43, 547-569. Google Scholar
Guetat, Ph., Boyer, C., Tognelli, A.Duda, J.M. (2011) 50 years Environmental Tritium transfer review in the vicinity of a French Research centre, Tritium 2010, Fusion Sci. Technol. 60 (4), 1238-1243. Google Scholar
IAEA (2003) Modelling the environmental transport of tritium in the vicinity of a long term atmospheric and sub-surface sources, http://www-pub.iaea.org/MTCD/publications/ PDF/Biomass3_web.pdf
IAEA (2008) Davis P.A., Leclerc E., Galeriu D.C., Melintescu A., Kashparov V., Peterson S.-R., Ravi P.M., Siclet F., Tamponet C., Specific activity models and parameter values for tritium, 14C and 36Cl in IAEA-TECDOC-1616, Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments.
IAEA (2012) Environmental Modelling for radiation Safety (EMRAS), A summary report of the results of the EMRAS Programme (2003-2007), Modelling the Environmental Transfer of tritium and Carbon-14 to biota and Man, IAEA-TECDOC-1678 Companion CD.
ICRP publication 56 (1989) Hydrogen, Ann. ICRP 20 (1), 15-19.
Kim, M.-A., Baumgärtner, F. (1994) Equilibrium and non-equilibrium partition of tritium between organics and tissue water of different biological systems, Appl. Radiat. Isotopes 45, 353-360. Google ScholarPubMed
Patryl, L., Galeriu, D., Armand, P., (2011) Sensitivity Analysis of Rain Characteristics on HTO Concentration in Drops, Fusion Sci. Technol. 60 (4), 1228-1231. Google Scholar
Melintescu A. (2011) Processes and parameters in modelling dry and wet deposition of radionuclides, part of Ph.D. thesis, Romania X.
Van Diepen, Driessen P.M., van der Goot E., Goudriaan J., Hijmans R.J., Hooijer A.A., van Keulen H., van Kappel R.R., de Koning G.H.J., van Kraalingen D.W.G., Kropff M.J., van Laar H.H., Rappoldt C., Penning de Vries F.W.T., Spitters C.J.T., Supit I., van der Wal T., Wolf J. (2003) WOFOST: Updated system description of the WOFOST crop growth simulation model as implemented in the Crop Growth Monitoring System applied by the European Commission, I. Supit, E.van der Goot (Eds).