Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T19:31:28.130Z Has data issue: false hasContentIssue false

Wood 14C Dating with AixMICADAS: Methods and Application to Tree-Ring Sequences from the Younger Dryas Event in the Southern French Alps

Published online by Cambridge University Press:  18 September 2017

Manuela Capano*
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France
Cécile Miramont
Affiliation:
IMBE, Aix-Marseille University, CNRS, IRD, Avignon University, Technopôle de l’Arbois, 13545 Aix-en-Provence, France
Frédéric Guibal
Affiliation:
IMBE, Aix-Marseille University, CNRS, IRD, Avignon University, Technopôle de l’Arbois, 13545 Aix-en-Provence, France
Bernd Kromer
Affiliation:
Institute of Environmental Physics, University of Heidelberg, Germany
Thibaut Tuna
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France
Yoann Fagault
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France
Edouard Bard*
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France
*
*Corresponding authors. Email: capano@cerege.fr; bard@cerege.fr.
*Corresponding authors. Email: capano@cerege.fr; bard@cerege.fr.

Abstract

The AixMICADAS facility is in part dedicated to research on radiocarbon (14C) calibration by means of various archives. For this purpose, we are improving upon the capacity to accurately date subfossil wood. In the current study, nine chemical pretreatment protocols are tested on six wood samples of known ages. The optimization based on 14C ages, 13C/12C ratios, carbon % and overall mass yield % leads us to favor the acid-base-acid-bleaching pretreatment (ABA-B). This efficient method is shown to provide a residue of holocellulose with optimal blanks equivalent to an age of 51,300 14C BP with a standard deviation of 1500 yr based on 25 analyses. The seven wood samples from the Sixth International Radiocarbon Intercomparison (SIRI) are then analyzed as a further verification of the accuracy of our method. As a first scientific contribution, we studied two tree-ring sequences from subfossil pines (Barb12 and Barb17) collected in the southern French Alps. New 14C analyses were performed at high resolution (every third year) and are shown to agree well with results obtained previously by high precision β-counting on CO2 from large samples at lower resolution for Barb17 and accelerator mass spectrometry (AMS) data for Barb12. The new 14C series are then matched to the Kauri and YDB chronologies: the new sequence of Barb12-17 tentatively corresponds to the interval between 12,836 and 12,594 cal BP within the Younger Dryas cold period. The 14C comparison between the Barb12-17 sequence from France and the Kauri sequence from New Zealand allows calculating the 14C Inter-Hemispheric Gradient (IHG), with an average value of ca. 57 yr. The IHG stayed relatively high throughout the studied period. Interestingly, the IHG exhibits a transient maximum value (ca. 100 yr) during the period of rapid Δ14C rise (12,750–12,720 cal BP), a behavior that could be due to a delayed response of the Southern Hemisphere.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anchukaitis, KJ, Evans, MN, Lange, T, Smith, DR, Leavitt, SW, Schrag, DP. 2008. Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Analytical Chemistry 80(6):20352041.Google Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3:635645.CrossRefGoogle Scholar
Bard, E, Tuna, T, Fagault, Y, Bonvalot, L, Wacker, L, Fahrni, S, Synal, H-A. 2015. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France. Nuclear Instruments and Methods in Physics Research B 361:80–86.Google Scholar
Borella, S, Leuenberger, M, Saurer, M, Siegwolf, R. 1998. Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction. Journal of Geophysical Research Atmospheres 1031(D16):1951919526.CrossRefGoogle Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric oceanic and terrestrial reservoirs. Global Biogeochemical cycles 9:565584.CrossRefGoogle Scholar
Brendel, O, Iannetta, PPM, Stewart, D. 2000. A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis 11:710.Google Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338:370374.CrossRefGoogle ScholarPubMed
Bruhn, F, Duhr, A, Grootes, PM, Mintrop, A, Nadeau, M. 2001. Chemical removal of conservation substances by “Soxhlet”-type extraction. Radiocarbon 43(2A):229237.CrossRefGoogle Scholar
Cain, WF, Suess, HE. 1976. Carbon-14 in tree rings. Journal of Geophysical Research – Oceans and Atmospheres 81(21):36883694.CrossRefGoogle Scholar
Capano, M, Marzaioli, F, Sirignano, C, Altieri, S, Lubritto, C, D’Onofrio, A, Terrasi, F. 2010. 14C AMS measurements in tree rings to estimate local fossil CO2 in Bosco Fontana forest (Mantova, Italy). Nuclear Instruments and Methods in Physics Research B 268(7–8):11131116.Google Scholar
Capano, M, Marzaioli, F, Passariello, I, Pignatelli, O, Martinelli, N, Gigli, S, Gennarelli, I, De Cesare, N, Terrasi, T. 2012. Preliminary radiocarbon analyses of contemporaneous and archaeological wood from the Ansanto Valley (southern Italy). Radiocarbon 54(3):701714.Google Scholar
Capano, M, Altieri, S, Marzaioli, F, Sirignano, C, Pignatelli, O, Martinelli, N, Passariello, I, Sabbarese, C, Ricci, P, Gigli, S, Terrasi, F. 2013. Widespread fossil CO2 in the Ansanto Valley (AV – Italy): dendrochronological, 14C and 13C analyses on tree rings. Radiocarbon 55(2–3):11141122.Google Scholar
Cross, CF, Bevan, EJ. 1912. Researches on Cellulose 3. London.Google Scholar
Cullen, LE, MacFarlane, C. 2005. Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material. Tree Physiology 25:563569.Google Scholar
Cullen, LE, Grierson, PF. 2006. Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla? Palaeogeography, Palaeoclimatology, Palaeoecology 236:206216.Google Scholar
Dee, MW, Brock, F, Bowles, AD, Bronk Ramsey, C. 2011. Using a silica substrate to monitor the effectiveness of radiocarbon pretreatment. Radiocarbon 53(4):705711.CrossRefGoogle Scholar
de Vries, H, Barendsen, GW. 1954. Measurements of age by the carbon-14 technique. Nature 174:11381141.Google Scholar
Fedi, ME, Caforio, L, Liccioli, L, Mandò, PA, Salvini, A, Taccetti, F. 2014. A simple and effective removal procedure of synthetic resins to obtain accurate radiocarbon dates of restored artworks. Radiocarbon 56(3):969979.Google Scholar
Fengel, D, Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Berlin & New York: W de Gruyter.Google Scholar
Gaudinski, JB, Dawson, TE, Quideau, S, Schuur, EA, Roden, JS, Trumbore, SE, Sandquist, DR, Oh, SW, Wasylishen, RE. 2005. Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements. Analytical Chemistry 77(22):72127224.CrossRefGoogle ScholarPubMed
Gray, J, Thompson, P. 1977. Climatic information from 18O/16O analysis of cellulose, lignin and whole wood from tree rings. Nature 270:708709.Google Scholar
Green, JW. 1963. Wood cellulose. In: Whistler RL, editor. Methods in Carbohydrate Chemistry. Volume III. New York: Academic Press. p 921.Google Scholar
Harlow, BA, Marshall, JD, Robinson, AP. 2006. A multi-species comparison of δ13C from whole wood, extractive-free wood and holocellulose. Tree Physiology 26(6):767774.Google Scholar
Hogg, A, Southon, J, Turney, C, Palmer, J, Bronk Ramsey, C, Fenwick, P, Boswijk, G, Friedrich, M, Helle, G, Hughen, K, Jones, R, Kromer, B, Noronha, A, Reynard, L, Staff, R, Wacker, L. 2016a. Punctuated shutdown of Atlantic meridional overturning circulation during Greenland Stadial 1. Nature– Scientific Report 6:25902.CrossRefGoogle ScholarPubMed
Hogg, A, Southon, J, Turney, C, Palmer, J, Bronk Ramsey, C, Fenwick, P, Boswijk, G, Büntgen, U, Friedrich, M, Helle, G, Hughen, K, Jones, R, Kromer, B, Noronha, A, Reinig, F, Reynard, L, Staff, R, Wacker, L. 2016b. Decadally resolved lateglacial radiocarbon evidence from New Zealand Kauri. Radiocarbon 58(4):709733.CrossRefGoogle Scholar
Hoper, ST, McCormac, FG, Hogg, AG, Higham, TG, Head, MJ. 1998. Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40(1):4550.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):29822990.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.Google Scholar
Hughen, K, Southon, J, Lehman, S, Overpeck, T. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:19511954.CrossRefGoogle ScholarPubMed
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Remmele, S, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute – an inventory. Quaternary Science Reviews 36:7890.Google Scholar
Kromer, B, Manning, SW, Friedrich, M, Talamo, S, Trano, N. 2010. 14C Calibration in the 2nd and 1st millennia BC—Eastern Mediterranean Radiocarbon Comparison Project (EMRCP). Radiocarbon 52(3):875886.Google Scholar
Kromer, B, Friedrich, M, Talamo, S. 2015. Progress Report on Dendrochronology and 14C of the Hohenheim Preboreal/YD and Late Glacial Pine chronologies. Zürich IntCal‐Dendro Meeting, Zürich, August 4–5.Google Scholar
Leavitt, SW, Danzer, SR. 1993. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65(1):8789.Google Scholar
Levin, I, Kromer, B, Wagenbach, D, Munnich, KO. 1987. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39B(1–2):8995.Google Scholar
Li, Q, Liu, Y. 2013. A simple and rapid preparation of pure cellulose confirmed by monosaccharide compositions, 13C, yields and C%. Dendrochronologia 31:273278.Google Scholar
Liu, Z, Sun, X, Hao, M, Huang, C, Xue, Z, Mu, T. 2015. Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr. Polym. 117:99105.Google Scholar
Loader, NJ, Robertson, I, Barker, AC, Switsur, VR, Waterhouse, JS. 1997. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chemical Geology 136(3):313317.Google Scholar
MacFarlane, C, Warren, CR, White, DA, Adams, MA. 1999. A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiology 19(12):831835.Google Scholar
McCormac, FG, Hogg, AG, Higham, TG, Baillie, ML, Palmer, JG, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Variations of radiocarbon in tree rings: Southern Hemisphere offset preliminary results. Radiocarbon 40(3):17.Google Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCAL04 Southern Hemisphere calibration, 0–11.0 cal. kyr BP. Radiocarbon 46(3):10871092.Google Scholar
Miramont, C, Sivan, O, Rosique, T, Edouard, JL, Jorda, M. 2000. Subfossil tree deposits in the middle Durance (southern Alps, France); environmental changes from Allerod to Atlantic. Radiocarbon 42(3):423435.CrossRefGoogle Scholar
Miramont, C, Sivan, O. 2008. Subfossil trees in the southern Alps of France, markers of the history of river landscapes. Lettre pigb-pmrc France 21 - Changement global. p 5866.Google Scholar
Miramont, C, Sivan, O, Guibal, F, Kromer, B, Talamo, S, Kaiser, KF. 2011. L’étalonnage du temps du radiocarbon par les cernes d’arbre. L’apport des series dendrochronologiques du gisement de bois subfossiles du torrent des Barbiers (Alpes Françaises du sud). Quaternaire 22(3):261271.Google Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1:263267.CrossRefGoogle Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):13581370.Google Scholar
Passariello, I, Marzaioli, F, Lubritto, C, Rubino, M, D’Onofrio, A, De Cesare, N, Borriello, G, Casa, G, Palmieri, A, Rogalla, D, Sabbarese, C, Terrasi, F. 2007. Radiocarbon sample preparation at the CIRCE AMS Laboratory in Caserta (Italy). Radiocarbon 49(2):225232.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rinne, KT, Boettger, T, Loader, NJ, Robertson, I, Switsur, VR, Waterhouse, JS. 2005. On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chemical Geology 222:7582.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506519.Google Scholar
Santos, GM, Bird, MI, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA, Arneth, A. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.CrossRefGoogle Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2–3):534544.CrossRefGoogle Scholar
Schaub, M, Kaiser, KF, Frank, DC, Buentgen, U, Kromer, B, Talamo, S. 2008. Environmental change during the Allerød and Younger Dryas reconstructed from tree-ring data. Boreas 37:7486.Google Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52(2–3):859865.Google Scholar
Scott, EM, Naysmith, P, Cook, GT. 2016. Interim report on SIRI with preliminary consensus values – June 2016. Unpublished.Google Scholar
Sivan, O, Miramont, C, Édouard, JL. 2006. Rythmes de la sédimentation et interprétations paléoclimatiques lors du Postglaciaire (Alpes du Sud) 14C et dendro-géomorphologie, deux chronomètres complémentaires. L’Érosion entre Société, Climat et Paléoenvironnement, Table ronde en l’honneur du Professeur René NEBOIT-GUILHOT Clermont-Ferrand. p 423428.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(2–3):13711379.CrossRefGoogle Scholar
Staff, RA, Reynard, L, Brock, F, Bronk Ramsey, C. 2014. Wood pretreatment protocols and measurement of tree-ring standards at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 56(2):709715.Google Scholar
Stuiver, M, Braziunas, T. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3:289305.Google Scholar
Stuiver, M, Braziunas, T. 1998. Anthropogenic and solar component of hemispheric 14C. Geophysical Research Letters 25(3):329332.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Quay, PD. 1981. Atmospheric C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53:349362.CrossRefGoogle Scholar
Szymczak, S, Joachimski, MM, Bräuning, A, Hetzer, T, Kuhlemann, J. 2011. Comparison of whole wood and cellulose carbon and oxygen isotope series from Pinus nigra ssp. laricio (Corsica/France). Dendrochronologia 29:219226.Google Scholar
Tans, PP, De Jong, AFM, Mook, WG. 1978. Chemical pretreatment and radial flow of 14C in tree rings. Nature 271:234235.Google Scholar
van der Plicht, J, Hogg, A. 2006. A note on reporting radiocarbon. Quaternary Geochronology I. 237240.Google Scholar
Vertregt, N, de Vries, FWTP. 1987. A rapid method for determining the efficiency of synthesis of plant biomass. Journal of Theoretical Biology 128(1):109119.Google Scholar
Wallis, AFA, Wearne, RH, Wright, PJ. 1997. New approaches to the rapid analysis of cellulose in wood. Proceedings of ISWPC: 9th International Symposium on Wood and Pulping Chemistry. Montréal. C3:1–4.Google Scholar