Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:25:47.826Z Has data issue: false hasContentIssue false

The Use of Natural 14C and 13C in Soils for Studies on Global Climate Change

Published online by Cambridge University Press:  18 July 2016

Peter Becker-Heidmann
Affiliation:
Institut für Bodenkunde, Universität Hamburg, Allende-Platz 2, D-2000 Hamburg 13, Germany
Hans-Wilhelm Scharpenseel
Affiliation:
Institut für Bodenkunde, Universität Hamburg, Allende-Platz 2, D-2000 Hamburg 13, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some examples are given to show that the depth distribution curves of natural 14C and 13C of thin-layer sampled soil profiles can be used for inferring changes in soil organic matter and climate changes. By using a simple exchange model, we can determine whether decomposition products are fixed by clay or transported downward toward the groundwater table. We can also estimate the amount of the Greenhouse gases, CO2 and CH4, produced by the decomposition of the organic matter in terrestrial and paddy soils and emitted from the soil. A change from C3 to C4 plants, which might occur during a predicted temperature rise in some areas, thereby influencing the carbon balance, can be clearly detected by the δ13C depth profiles. A change in organic matter input can also be calculated under certain circumstances.

Type
II. Applied Isotope Geochemistry
Copyright
Copyright © The American Journal of Science 

References

Arnold, R. W., Szabolcs, I. and Targulian, V. O., eds. 1990 Global Soil Change. Report of an IIASA-ISSS-UNEP Task Force on the Role of Soil in Global Change. Laxenburg, Austria, International Institute for Applied Systems Analysis. 110 p.Google Scholar
Balesdent, J., Wagner, G. H. and Mariotti, A. 1988 Soil organic matter turnover in long-term field experiments as revealed by the 13C natural abundance. Soil Science Society of America Journal 52: 118130.Google Scholar
Becker-Heidmann, P. 1989 Die Tiefenfunktionen der natürlichen Kohlenstoff-Isotopengehalte von vollständig dünnschichtweise beprobten Parabraunerden und ihre Relation zur Dynamik der organischen Substanz in diesen Böden. Hamburger Bodenkundliche Arbeiten 13: 1248.Google Scholar
Becker-Heidmann, P. (ms.) 1990 Carbon fluxes in important soil classes, with emphasis on Lessivé soils and on soils of the terrestrial, of the hydromorphic, and temporarily submerged environment. Final report to GTZ and DFG: 177 p.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1986 Thin layer δ13C and D14C monitoring of “Lessivé” soil profiles. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 383390.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1989 Carbon isotope dynamics in some tropical soils. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 672679.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1992 Studies of soil organic matter dynamics using natural carbon isotopes. The Science of the Total Environment, in press.CrossRefGoogle Scholar
Bertram, H. G. 1986 Zur Rolle des Bodens im globalen Kohlenstoffzyklus. Messung der Temperaturabhängigkeit der Abbaurate des organischen Kohlenstoffs im Boden. Veröffentlichungen der Naturforschenden Gesellschaft zu Emden von 1814, 8 (Dissertation). 144 p.Google Scholar
Bouwman, A. F., ed. 1990 Soils and the Greenhouse Effect. Proceedings of the International Conference on Soils and the Greenhouse Effect. Chichester, John Wiley & Sons. 574 p.Google Scholar
Cerri, C., Feller, C., Balesdent, J., Victoria, R. and Plenecassagne, A. 1985 Application du traçage isotopique naturel en 13C à l'étude de la dynamique de la matière organique dans les sols. Comptes Rendus des Sceances de l'Academie des Sciences Paris T.300(II) 9: 423428.Google Scholar
Cherkinsky, A. E. and Brovkin, V. A. 1991 A model of humus formation in Soils Based on Radiocarbon data of natural ecosystems. Abstract. Radiocarbon 33(2): 186.Google Scholar
Cicerone, R. J. and Oremland, R. S. 1988 Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2: 299327.Google Scholar
Degens, E. T., Kempe, S. and Weibin, G., eds. 1987 Transport of carbon and minerals in major world rivers, Part 4. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, SCOPE/UNEP Special Issue 64: 512 p.Google Scholar
Martin, A., Mariotti, A., Balesdent, J., Lavelle, P. and Vuattoux, R. 1990 Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biology and Biochemistry 22: 517523.Google Scholar
Martin, U. 1985 Decomposition of uniformly 14C-labelled rice straw in a continuously flooded soil in the Philippines. Hamburger Bodenkundliche Arbeiten 6: 1129.Google Scholar
Nakamura, K., Takai, Y. and Wada, E. 1990 Carbon isotopes of soil gases and related organic matter in an agroecosystem with special reference to paddy field. In Durrance, E. M., Galimov, E. M., Hinkle, M. E., Reimer, G. M., Sugusaki, R. and Augustithis, S. S., eds., Geochemistry of Gaseous Elements and Compounds. Athens, Greece, Theophrastus Publications SA: 455484.Google Scholar
Neue, H. U., Becker-Heidmann, P. and Scharpenseel, H. W. 1990 Organic matter dynamics, soil properties and cultural practices in rice lands and their relationship to methane production. In Bouwman, A. F., ed., Soils and the Greenhouse Effect. Proceedings of the International Conference on Soils and the Greenhouse Effect. Chichester, John Wiley & Sons: 457466.Google Scholar
Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. 1987 Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51: 11731179.Google Scholar
Rosenfeld, W. D. and Silverman, S. R. 1959 Carbon isotope fractionation in bacterial production of methane. Science 130: 16581659.CrossRefGoogle ScholarPubMed
Scharpenseel, H. W., Becker-Heidmann, P., Neue, H. U. and Tsutsuki, K. 1989 Bomb-carbon, 14C dating and δ13C-measurements as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. The Science of the Total Environment 81/82: 99110.Google Scholar
Scharpenseel, H. W., Schomaker, M. and Ayoub, A., eds. 1990 Soils on a Warmer Earth. Proceedings of the International Workshop on Effects of Expected Climate Change on Soil. Amsterdam, Elsevier: 274 p.Google Scholar
Theng, B. K. G., Tate, K. R. and Becker-Heidmann, P. (ms) Towards establishing the age, location, and identity of inert soil organic matter. Zeitschrift für Pflanzenernaehrung und Bodenkunde, VCH- Verlagsgesellschaft, Weinheim, in press.Google Scholar
Tsutsuki, K., Suzuki, C., Kuwatsuka, S., Becker-Heidmann, P. and Scharpenseel, H. W. 1987 Investigation on the stabilization process of the humus in Mollisols. Zeitschrift für Pflanzenernaehrung und Bodenkunde 151: 8790.CrossRefGoogle Scholar