Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T02:14:16.461Z Has data issue: false hasContentIssue false

Size Matters: Radiocarbon Dates of <200 µg Ancient Collagen Samples with AixMICADAS and Its Gas Ion Source

Published online by Cambridge University Press:  07 November 2017

Helen Fewlass*
Affiliation:
Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Sahra Talamo
Affiliation:
Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Thibaut Tuna
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Aix-en-Provence, France
Yoann Fagault
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Aix-en-Provence, France
Bernd Kromer
Affiliation:
Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany
Helene Hoffmann
Affiliation:
Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany
Caterina Pangrazzi
Affiliation:
Dipartimento di Lettere e Filosofia, Università degli studi di Trento, Trento, Italy
Jean-Jacques Hublin
Affiliation:
Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Aix-en-Provence, France
*
*Corresponding author. Email: helen_fewlass@eva.mpg.de.

Abstract

For many of archaeology’s rarest and most enigmatic bone artifacts (e.g. human remains, bone ornaments, worked bone), the destruction of the 500 mg material necessary for direct accelerator mass spectrometry (AMS) dating on graphite targets would cause irreparable damage; therefore many have not been directly dated. The recently improved gas ion source of the MICADAS (MIni CArbon DAting System) offers a solution to this problem by measuring gaseous samples of 5–100 µg carbon at a level of precision not previously achieved with an AMS gas ion source. We present the results of the first comparison between “routine” graphite dates of ca. 1000 µg C (2–3 mg bone collagen) and dates from aliquots of gaseous samples of <100 µg C (<0.2 mg bone collagen), undertaken with the highest possible precision in mind. The experiment demonstrates the performance of the AixMICADAS in achieving reliable radiocarbon measurements from <0.2 mg collagen samples back to 40,000 14C BP. The technique has great implications for resolving chronological questions for key archaeological artifacts.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bard, E, Tuna, T, Fagault, Y, Bonvalot, L, Wacker, L, Fahrni, S, Synal, H-A. 2015. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France. Nuclear Instruments and Methods in Physics Research B 361:8086.CrossRefGoogle Scholar
Bonvalot, L, Tuna, T, Fagault, Y, Jaffrezo, JL, Jacob, V, Chevrier, F, Bard, E. 2016. Estimating contributions from biomass burning and fossil fuel combustion by means of radiocarbon analysis of carbonaceous aerosols: application to the Valley of Chamonix. Atmosperic Chemistry Physics 16:1375313772.CrossRefGoogle Scholar
Bronk Ramsey, C, Hedges, REM. 1987. A gas ion source for radiocarbon dating. Nuclear Instruments and Methods in Physics Research B 29(1–2):4549.CrossRefGoogle Scholar
Bronk Ramsey, C, Hedges, R. 1997. Hybrid ion sources: radiocarbon measurements from microgram to milligram. Nuclear Instruments and Methods in Physics Research B 123(1):539545.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004a. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155164.CrossRefGoogle Scholar
Bronk Ramsey, C, Ditchfield, P, Humm, M. 2004b. Using a gas ion source for radiocarbon AMS and GC-AMS. Radiocarbon 46(1):2532.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
de Rooij, M, van der Plicht, J, Meijer, HAJ. 2010. Porous iron pellets for AMS 14C analysis of small samples down to ultra-microscale size (10–25 μgC). Nuclear Instruments and Methods in Physics Research B 268(7–8):947951.CrossRefGoogle Scholar
Delqué-Količ, E, Caffy, I, Comby-Zerbino, C, Dumoulin, J-P, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, J-F, Thellier, B, Vincent, J. 2013. Advances in Handling Small Radiocarbon Samples at the Laboratoire de Mesure du Carbone 14 in Saclay, France. Radiocarbon 55(2-3):648656.CrossRefGoogle Scholar
Ertun, T, Xu, S, Bryant, CL, Maden, C, Murray, C, Currie, M, Freeman, ST. 2005. Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory. Radiocarbon 47(3):453464 CrossRefGoogle Scholar
Fagault, Y, Tuna, T, Rostek, F, Bard, E. 2017. Radiocarbon dating of small foraminifera samples with a gas ion source. 14th International AMS Conference, Ottawa.Google Scholar
Fahrni, SM, Wacker, L, Synal, H-A, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:320327.CrossRefGoogle Scholar
Genberg, J, Stenstrom, K, Elfman, M, Olsson, M. 2010. Development of graphitization of μg-sized samples at Lund University. Radiocarbon 52(3):12701276.CrossRefGoogle Scholar
Hammer, S. 2003. Einsatz von Radioisotopen zur Interpretation der raum - zeitlichen Variabilität von organischem Aerosol. Ruprecht-KarlsUniversität Heidelberg.Google Scholar
Hendriks, L, Hajdas, I, McIntyre, C, Küffner, M, Scherrer, NC, Ferreira, ESB. 2016. Microscale radiocarbon dating of paintings. Applied Physics A 122(3):110.CrossRefGoogle Scholar
Higham, TFG, Jacobi, RM, Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2):179195.CrossRefGoogle Scholar
Hoffmann, HM. 2016. Micro radiocarbon dating of the particulate organic carbon fraction in Alpine glacier ice: method refinement, critical evaluation and dating applications. Universität Heidelberg.Google Scholar
Hua, Q, Zoppi, U, Williams, AA, Smith, AM. 2004. Small-mass AMS radiocarbon analysis at ANTARES. Nuclear Instruments and Methods in Physics Research B 223:284292.CrossRefGoogle Scholar
Kromer, B, Lindauer, S, Synal, H-A, Wacker, L. 2013. MAMS - A new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research B 294:1113.CrossRefGoogle Scholar
Liebl, J, Steier, P, Golser, R, Kutschera, W, Mair, K, Priller, A, Vonderhaid, I, Wild, EM. 2013. Carbon background and ionization yield of an AMS system during C-14 measurements of microgram-size graphite samples. Nuclear Instruments and Methods in Physics Research B 294:335339.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 231:241242.CrossRefGoogle Scholar
Middleton, R. 1984. A review of ion sources for accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):193199.CrossRefGoogle Scholar
Pearson, A. 1998. Microscale AMS 14C measurement at NOSAMS. Radiocarbon 40(1):6175.CrossRefGoogle Scholar
Ruff, M, Wacker, L, Gaggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307314.CrossRefGoogle Scholar
Ruff, M, Szidat, S, Gäggeler, HW, Suter, M, Synal, H-A, Wacker, L. 2010a. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research B 268(7–8):790794.CrossRefGoogle Scholar
Ruff, M, Fahrni, S, Gäggeler, HW, Hajdas, I, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010b. On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon 52(4):16451656.CrossRefGoogle Scholar
Santos, GM, Moore, RB, Southon, JR, Griffin, S, Hinger, E, Zhang, D. 2007a. AMS 14C sample preparation at the KCCAMS/UCI facility: Status report and performance of small samples. Radiocarbon 49(2):255269.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007b. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research B 259(1):293302.CrossRefGoogle Scholar
Smith, AM, Petrenko, VV, Hua, Q, Southon, J, Brailsford, G. 2007. The Effect of N2O, Catalyst, and Means of Water Vapor Removal on the Graphitization of Small CO2 Samples. Radiocarbon 49(2):245254 CrossRefGoogle Scholar
Smith, AM, Hua, Q, Williams, A, Levchenko, V, Yang, B. 2010. Developments in micro-sample 14C AMS at the ANTARES AMS facility. Nuclear Instruments and Methods in Physics Research B 268(7–8):919923.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Talamo, S, Richards, M. 2011. A Comparison of Bone Pretreatment Methods for AMS Dating of Samples >30,000 BP. Radiocarbon 53(3):443449.CrossRefGoogle Scholar
Tuna, T, Fagault, Y, Bonvalot, L, Capano, M, Bard, E. 2017. Status report of AixMICADAS performances with solid and gas samples. 14th International AMS Conference, Ottawa.Google Scholar
Uhl, T, Kretschmer, W, Luppold, W, Scharf, A. 2005. AMS measurements from microgram to milligram. Nuclear Instruments and Methods in Physics Research B 240(1-2):474477.CrossRefGoogle Scholar
van der Plicht, J, Hogg, A. 2006. A note on reporting radiocarbon. Quaternary Geochronology 1(4):237240.CrossRefGoogle Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon. Journal of Archaeological Science 26:687695.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, HA. 2010a. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976979.CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Nemec, N, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010b. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52(2–3):252262 CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010c. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931934.CrossRefGoogle Scholar
Wacker, L, Lippold, J, Molnár, M, Schulz, H. 2013a. Towards radiocarbon dating of single foraminifera with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:307310.CrossRefGoogle Scholar
Wacker, L, Fahrni, SM, Hajdas, I, Molnar, M, Synal, HA, Szidat, S, Zhang, YL. 2013b. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:315319.CrossRefGoogle Scholar
Walter, SRS, Gagnon, AR, Roberts, ML, McNichol, AP, Gaylord, MCL, Klein, E. 2015. Ultra-small graphitization reactors for ultra-microscale 14C Analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Radiocarbon 57(1):109122.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Zhang, YL, Huang, RJ, El Haddad, I, Ho, KF, Cao, JJ, Han, Y, Zotter, P, Bozzetti, C, Daellenbach, KR, Canonaco, F, Slowik, JG, Salazar, G, Schwikowski, M, Schnelle-Kreis, J, Abbaszade, G, Zimmermann, R, Baltensperger, U, Prévôt, ASH, Szidat, S. 2015. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmosperic Chemistry Physics 15(3):12991312.CrossRefGoogle Scholar