Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T23:52:00.387Z Has data issue: false hasContentIssue false

Roman Ruins as an Experiment for Radiocarbon Dating of Mortar

Published online by Cambridge University Press:  18 July 2016

Irka Hajdas*
Affiliation:
Laboratory of Ion Beam Physics, ETH, Schafmattstr. 20, 8093 Zurich, Switzerland
Jürgen Trumm
Affiliation:
Kantonsarchäologie Aargau, Industriestr. 3, 5200 Brugg, Switzerland
Georges Bonani
Affiliation:
Laboratory of Ion Beam Physics, ETH, Schafmattstr. 20, 8093 Zurich, Switzerland
Carol Biechele
Affiliation:
Laboratory of Ion Beam Physics, ETH, Schafmattstr. 20, 8093 Zurich, Switzerland
Mantana Maurer
Affiliation:
Laboratory of Ion Beam Physics, ETH, Schafmattstr. 20, 8093 Zurich, Switzerland
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, ETH, Schafmattstr. 20, 8093 Zurich, Switzerland
*
Corresponding author. Email: hajdas@phys.ethz.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The remains of Vindonissa, the Roman legionary camp in Switzerland, have been the subject of extensive archaeological studies. Knowledge of the building time plays a role in reconstructions of the history of this site. We radiocarbon dated mortar samples selected from one of the Roman monuments (Westtor) as well as a nearby Medieval monastery. 14C ages obtained on the first fraction and second fraction of very short dissolution appear close to the expected Roman age of ∼2000 BP, while the monastery is dated to historic times, after AD 1308.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937–8.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Hajdas, I, Bonani, G, Zimmerman, SH, Mendelson, M, Hemming, S. 2004. 14C ages of ostracodes from Pleistocene lake sediments of the western Great Basin, USA—results of progressive acid leaching. Radiocarbon 46(1):189200.CrossRefGoogle Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating ancient mortar. American Scientist 91(2):130–7.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the Medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Hodgins, G, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F. 2011. 14C dating of Roman mortars – preliminary tests using diluted hydrochloric acid injected in batches. In: Ringbom, Å, Hohlfelder, R, editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Rome, 27–29 March 2008. Helsinki: Societas Scientiarium Fennica. p 209–13.Google Scholar
Jacobs, F. Forthcoming. Der römische Kalkmörtel. Mineralogische, petrographische und chemische analysen. In: Trumm, J, Flück, M, editors. Vindonissa. Via et porta praetoria. Brugg: Gesellschaft Pro Vindonissa XXII.Google Scholar
Kedar, BZ, Mook, WG. 1978. Radiocarbon dating of mortar from the city-wall of Ascalon. Israel Exploration Journal 28:173–6.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from Medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, P, Suksi, J. 2011. Problems in radiocarbon dating of Roman pozzolana mortars. In: Ringbom, Å, Hohlfelder, R, editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Rome, 27–29 March 2008. Helsinki: Societas Scientiarium Fennica. p 214–30.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Brock, F. 2011. Mortar dating and Roman pozzolana, results and interpretations. In: Ringbom, Å, Hohlfelder, R, editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Rome, 27–29 March 2008. Helsinki: Societas Scientiarium Fennica. p 187208.Google Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Trumm, J. 2010. Vindonissa - Stand der Forschung I. Vorgeschichte, keltische Zeit und der militärische Komplex. In: Jahresbericht der Gesellschaft Pro Vindonissa. Brugg: Gesellschaft Pro Vindonissa. p 3753.Google Scholar
Van Strydonck, MJY, Dupas, M, Dauchotdehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702–10.CrossRefGoogle Scholar