Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T13:13:19.502Z Has data issue: false hasContentIssue false

Revisions and Extension of the Hohenheim Oak and Pine Chronologies: New Evidence About the Timing of the Younger Dryas/Preboreal Transition

Published online by Cambridge University Press:  18 July 2016

Marco Spurk
Affiliation:
University of Hohenheim, Institute of Botany, D-70593 Stuttgart, Germany
Michael Friedrich
Affiliation:
University of Hohenheim, Institute of Botany, D-70593 Stuttgart, Germany
Jutta Hofmann
Affiliation:
University of Hohenheim, Institute of Botany, D-70593 Stuttgart, Germany
Sabine Remmele
Affiliation:
University of Hohenheim, Institute of Botany, D-70593 Stuttgart, Germany
Burkhard Frenzel
Affiliation:
University of Hohenheim, Institute of Botany, D-70593 Stuttgart, Germany
Hanns Hubert Leuschner
Affiliation:
University of Göttingen, Albrecht-v.-Haller-Institute for Plant Sciences, D-37075 Göttingen, Germany
Bernd Kromer
Affiliation:
Heidelberg Academy of Sciences, Institute of Environmental Physics, INF 366, D-69120 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Oak and pine samples housed at the Institute of Botany, University of Hohenheim, are the backbone of the early Holocene part of the radiocarbon calibration curve, published in 1993 (Becker 1993; Kromer and Becker 1993; Stuiver and Becker 1993; Vogel et al. 1993). Since then the chronologies have been revised. The revisions include 1) the discovery of 41 missing years in the oak chronology and 2) a shift of 54 yr for the oldest part back into the past. The oak chronology was also extended with new samples as far back as 10,429 BP (8480 BC). In addition, the formerly tentatively dated pine chronology (Becker 1993) has been rebuilt and shifted to an earlier date. It is now positioned by 14C matching at 11,871-9900 BP (9922–7951 BC) with an uncertainty of ±20 yr (Kromer and Spurk 1998). With these new chronologies the 14C calibration curve can now be corrected, eliminating the discrepancy in the dating of the Younger Dryas/Preboreal transition between the proxy data of the GRIP and GISP ice cores (Johnsen et al. 1992; Taylor et al. 1993), the varve chronology of Lake Gościąż (Goslar et al. 1995) and the pine chronology (Becker, Kromer and Trimborn 1991).

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Becker, B. 1993 An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 201213.Google Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 353: 647649.CrossRefGoogle Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T. L., Wohlfarth, B., Hammer, C. U. and Spurk, M. 1996 Synchronized terrestrial-atmospheric Deglacial records around the North Atlantic. Science 274: 11551160.CrossRefGoogle ScholarPubMed
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M., Różanski, K., Tisnerat, N., Walanus, A., Wicik, B. and Więckowski, K. 1995 High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377: 414417.CrossRefGoogle Scholar
Goslar, T., Arnold, M. and Pazdur, M. F. 1995 The Younger Dryas cold event – was it synchronous over the North Atlantic region? Radiocarbon 37(1): 6370.Google Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B. and Steffensen, J. P. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311313.Google Scholar
Kromer, B., Ambers, J., Baillie, M. G. L., Damon, P. E., Hessheimer, V., Hofmann, J., Jöris, O., Levin, I., Manning, S. W., McCormac, F. G., van der Plicht, J., Spurk, M., Stuiver, M. and Weninger, B. 1996 Report: Summary of the workshop “Aspects of High-Precision Radiocarbon Calibration”. Radiocarbon 38(3): 607610.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200–9439 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.Google Scholar
Kromer, B. and Spurk, M. 1998 Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon, this issue.Google Scholar
Leuschner, H.-H. 1992 Subfossil Trees. In Tree Rings and Environment: Proceedings of the International Dendrochronological Symposium. Lundqua Report 34: 193197.Google Scholar
Schweingruber, F. H., Briffa, K. R. and Jones, P. D. 1991 Yearly maps of summer temperatures in Western Europe from A.D. 1750 to 1975 and western north America from 1600 to 1982. Vegetatio 92: 571.CrossRefGoogle Scholar
Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 3565.Google Scholar
Taylor, K. C., Hammer, C. U., Alley, R. B., Clausen, H. B., Dahl-Jensen, D., Gow, A. J., Gundestrup, N. S., Kipfstuhl, J., Moore, J. C. and Waddington, E. D. 1993 Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366: 549552.Google Scholar
Vogel, J. C., Fuls, A., Visser, E. and Becker, B. 1993 Pretoria calibration curve for short-lived samples, 1930–3350 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 7386.CrossRefGoogle Scholar