Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-03T06:33:17.387Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Holocene Calcareous Tufa in Southern Poland

Published online by Cambridge University Press:  18 July 2016

Anna Pazdur
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Mieczysław F Pazdur
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Joachim Szulc
Affiliation:
Institute of Geological Sciences, Jagellonian University, Oleandry 2a PL-30-056 Cracow, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Calcareous tufa from five sites in southern Poland, representing several most typical conditions of tufa sedimentation, were chosen for 14C, 13C, and 18O measurements. These tufas were deposited in a high-energy turbulent stream (the Racławka site), in streams with moderate but variable flow (Rzerzuśnia and Trzebienice), and in semilimnic conditions (Sieradowice site). Sediments of the Gliczarów site represent spring travertines. In all but the latter site, direct comparison of 14C dates of carbonate and organic fractions was possible, leading to an estimate of initial apparent age of carbonate sediments. Clear correlation was found between the value of initial apparent age of tufas and the hydrodynamic conditions of sedimentation. Corresponding values range from ca 3900 yr (Racławka) to 910 yr for semilimnic sediments (Sieradowice). Intermediate, almost identical values, equal to 2460 ± 200 yr and 2100 ± 160 yr, were obtained for tufas from Rzerzuśnia and Trzebienice, respectively. Detailed sedimentologic classification of tufaceous deposits is presented and some primary and secondary factors affecting the accuracy of radiocarbon dates of various types of tufas are also discussed.

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

Alexandrowicz, S W, 1983, Malacofauna of Holocene calcareous sediments of Cracow Upland: Acta Geol Polonica, v 33, p 117158.Google Scholar
Alexandrowicz, S W, 1985, Malacofauna of the Holocene calcareous tufa from Podhale and Pieniny Mts, in Carpatho-Balkan Assoc Cong, 13th, Proc: Geol Inst, Cracow, p 710.Google Scholar
Buccino, G, D'Argenio, B, Ferreri, V, Brancaccio, L, Ferreri, M, Panichi, C and Stanzione, D, 1978, I travertini della Bassa Valle Del Tanagro (Campania): Studio geomorfologico, sedimentologico et geochimico: Soc Geol Italiana Boll, v 97, p 617646.Google Scholar
D'Argenio, B, Ferreri, V, Stanzione, D, Brancaccio, L and Ferreri, M, 1983, I travertini di Pontecagnano (Campagna): Geomorfologia, sedimentologia, geochimica: Soc Geol Italiana Boll, v 102, p 123136.Google Scholar
Demovic, R, Hoefs, J and Wedepohl, K H, 1972, Geochimische Untersuchungen an Travertinen der Slovakei: Contr Mineral & Petrol, v 31, p 1538.CrossRefGoogle Scholar
Friedman, I, 1970, Some investigations of the deposition of travertine from hot springs. I. The isotopic chemistry of a travertine depositing spring: Geochim et Cosmochim Acta, v 34, p 13031315.Google Scholar
Gonfiantini, R, Panichi, C and Tongiorgi, E, 1968, Isotopic disequilibrium in travertine deposition: Earth Planetary Sci Letters, v 5, p 5558.Google Scholar
Halicki, B and Lilpop, J, 1932, Czwartorzedowe trawertyny w Gliczarowie na Podhalu: Posiedzenia Naukowe Panstowowego Inst Geol, p 9798.Google Scholar
Jersak, J, Klatka, T and Snieszko, Z, 1983, Poznovistulianskie i holocenskie osady w rejonie Sieradowic (Gory Swietokrzyskie), in Poznovistulianskie i holocenskie zmiany srodowiska geograficznego na obszarach lessowych, Przewodnik konf: Univ Slaski, Katowice, p 8492.Google Scholar
Krajcar, I, Horvatincic, N, Srdoc, D and Obelic, B, 1985, On the initial 14C activity in karst aquifers with short mean residence time, in Internatl 14C conf, 12th, Abs: Trondheim, Tapir, p 154.Google Scholar
Manfra, L, Masi, U and Turi, B, 1976, La composizione isotopica dei travertini del Lazio: Geol Romana, v 15, p 127174.Google Scholar
Monty, C L V, 1976, The origin and development of cryptalgal fabrics, in Walter, M R, ed, Developments in sedimentology, vol 26, Stromatolites:Amsterdam, Elsevier, p 193259.Google Scholar
Mook, W G, 1980, Carbon-14 in hydrogeological studies, in Fritz, P and Fontes, J Ch, eds, Handbook of environmental isotope geochemistry, vol 1, The terrestial environment: Amsterdam, Elsevier, p 4974.Google Scholar
Pazdur, A and Pazdur, M F, 1986, 14C dating of calcareous tufa from different environments, in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 534538.Google Scholar
Srdoc, D, Horvatincic, N, Obelic, B and Sliepcevic, A, 1982, Rudjer Boskovic Institute radiocarbon measurements VII: Radiocarbon, v 24, no. 3, p 352371.Google Scholar
Srdoc, D, Horvatincic, N, Obelic, B and Sliepcevic, A, 1983, Radiocarbon dating of tufa in paleoclimatic studies, in Stuiver, M and Kra, R S, eds. Internatl 14C conf, 11th, Proc: Radiocarbon, v 25, no. 2, p 421427.Google Scholar
Srdoc, D, Obelic, B, Horvatincic, N and Sliepcevic, A, 1980, Radiocarbon dating of calcareous tufa: How reliable results can we expect? in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 3, p 858862.Google Scholar
Stuiver, M and Polach, H A, 1977, Discussion: Reporting of 14C data: Radiocarbon, v 19, no. 3, p 355363.CrossRefGoogle Scholar
Szulc, J, 1983, Genesis and classification of travertine deposits: Przeglad Geol, v 31, p 231236.Google Scholar
Szulc, J (ms), 1984, Sedimentation of the Quaternary travertines in southern Poland: Ph D thesis, Polish Acad Sci, Cracow.Google Scholar
Szulc, J, 1986, Holocene travertine deposits of the Cracow Upland, in IAS 7th European mtg: Excursion Guidebook, Cracow, p 185189.Google Scholar
Thorpe, P M, Holydak, D T, Preece, R C and Willing, M J, 1981, Validity of corrected 14C dates from calcareous tufa, in Formations carbonatées externes, tufs et travertins: Actes Colloques AGF, Paris, p 151156.Google Scholar
Thorpe, P M, Otlet, R L and Sweeting, M M, 1980, Hydrological implications from 14C profiling of UK tufa, in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 3, p 897908.Google Scholar
Urbanski, J, 1932, Przyczynek do znajomosci mieczakow miedzylodowcowych trawertynow z Gliczarowa pod Zakopanem: Roczniki PTG, v 8, p 205209.Google Scholar
Usdowski, E, Hoefs, J and Menschel, G, 1979, Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring: a model of chemical variations with inorganic CaCO3 precipitation: Earth Planetary Sci Letters, v 42, p 267276.Google Scholar