Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T17:31:50.091Z Has data issue: false hasContentIssue false

Radiocarbon Calibration by Means of Varves Versus 14C Ages of Terrestrial Macrofossils from Lake Gościąż and Lake Perespilno, Poland

Published online by Cambridge University Press:  18 July 2016

Tomasz Goslar
Affiliation:
Institute of Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland. Email: goslar@zeus.polsl.gliwice.pl
Maurice Arnold
Affiliation:
UMS 2004 (CNRS-CEA), Tandetron Bat. 30, Avenue de la Terrasse, 91198 Gif sur Yvette, France
Nadine Tisnerat-Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France
Christine Hatté
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France
Martine Paterne
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France
Magdalena Ralska-Jasiewiczowa
Affiliation:
W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents radiocarbon dates of terrestrial macrofossils from Lakes Gościąż and Perespilno, Poland. These data agree very well with most of the German pine calibration curve. In the Late Glacial, they generally agree with the data from Lake Suigetsu, Japan, and indicate constant or even increasing 14C age between 12.9 and 12.7 ka BP, rapid decline of 14C age around 12.6 ka BP, and a long plateau 10,400 14C BP around 12 ka BP. Correlation with corals and data from the Cariaco basin seems to support the concept of site-speficic, constant values of reservoir correction, in contradiction to those introduced in the INTCAL98 calibration. Around the Allerød/Younger Dryas boundary our data strongly disagree with those from the Cariaco basin, which reflects large discrepancy between calendar chronologies at that period. The older sequence from Lake Perespilno indicates two periods of rapid decline in 14C age, around 14.2 and 13.9 ka BP.

Type
Varve Chronologies
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Alley, RB, Meese, DA, Shuman, CA, Gow, AJ, Taylor, KC, Grootes, PM, White, JWC, Ram, M, Waddington, ED, Mayewski, PA, Zielinski, GA. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–9.CrossRefGoogle Scholar
Alley, RB, Shuman, CA, Meese, DA, Gow, AJ, Taylor, KC, Cuffey, KM, Fitzpatrick, JJ, Grootes, PM, Zielinski, GA, Ram, M, Spinelli, G, Elder, B. 1997. Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility, and application. Journal of Geophysical Research C102:26,367–81. Arnold M, Bard E, Maurice P, Valladas H, Duplessy JC. 1989. C-14 dating with the Gif-sur-Yvette Tandetron accelerator: status report and study of isotopic fractionations in the sputter ion source. Radiocarbon 31(2):191–9.Google Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Melieres, MA, Sonstegaard, E, Duplessy, JC. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126:275–87.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3): 1085–92.CrossRefGoogle Scholar
Birks, HH, Gulliksen, S, Haflidason, H, Mangerud, J, Possnert, G. 1996. New radiocarbon dates for the Vedde Ash and Saksunarvatn Ash from Western Norway. Quaternary Research 45:119–27.CrossRefGoogle Scholar
Brauer, A, Endres, CH, Günter, C, Litt, T, Stebich, M, Negendank, JFW. 1999. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews 18:321–9.CrossRefGoogle Scholar
Broecker, WS. 1997. Thermohaline circulation, the Achilles Heel of our climate system: will man-made CO2 upset the current balance? Science 278:1582–8.CrossRefGoogle ScholarPubMed
Burr, GS, Warren Beck, J, Taylor, FW, Recy, J, Edwards, RL, Cabioch, G, Correge, T, Donahue, D, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):10931106.CrossRefGoogle Scholar
Edwards, RL, Warren Beck, J, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260:962–8.CrossRefGoogle ScholarPubMed
Finkel, RC, Nishiizumi, K. 1997. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. Journal of Geophysical Research 102: 26,699706.CrossRefGoogle Scholar
Goslar, T, Kuc, T, Ralska-Jasiewiczowa, M, Różański, K, Arnold, M, Bard, E, van Geel, B, Pazdur, MF, Szeroczyńska, K, Wicik, B, Więckowski, K, Walanus, A. 1993. High-resolution lacustrine record of the Late Glacial/Holocene transition in Central Europe. Quaternary Science Reviews 12:287–94.CrossRefGoogle Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Tisnerat, N, Różański, K, Walanus, A, Wicik, B, Wieckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377:414–7.CrossRefGoogle Scholar
Goslar, T. 1998a. Late-glacial sediments of Lake Gościąż chronological background. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, central Poland. A monographic study, part 1: 119–24. Krakow: Szafer Institute of Botany.Google Scholar
Goslar, T. 1998b. Floating varve chronology of Lake Gościąż. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, central Poland. A monographic study. Part 1: 97–9. Krakow: Szafer Institute of Botany.Google Scholar
Goslar, T, Balaga, K, Arnold, M, Tisnerat, N, Starnawska, E, Kuzniarski, M, Chróst, L, Walanus, A, Więckowski, K. 1999a. Climate-related variations in the composition of the Late Glacial and early Holocene sediments of Lake Perespilno (eastern Poland). Quaternary Science Reviews 18:899911.CrossRefGoogle Scholar
Goslar, T, Wohlfarth, B, Björck, S, Possnert, G, Björck, J. 1999b. Variations of atmospheric 14C concentrations over the Alleröd-Younger Dryas transition. Climate Dynamics 15:2942.CrossRefGoogle Scholar
Goslar, T, Arnold, M, Tisnerat-Laborde, N, Czernik, J, Wieckowski, K. 2000. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403:877–80.CrossRefGoogle ScholarPubMed
Goslar, T, Mądry, W 1998. Using the Bayesian method to study the precision of dating by the “wiggle-matching” procedure. Radiocarbon 40(1):551–60.Google Scholar
Grönvold, K, Oskarsson, N, Johnsen, SJ, Clausen, HH, Hammer, CU, Bond, G, Bard, E. 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth and Planetary Science Letters 135:149–55.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Peterson, LC, Trumbore, S. 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380:51–4.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, D. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.CrossRefGoogle Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Fuhrer, K, Gundestrup, N, Hammer, CU, Iversen, P, Jouzel, J, Stauffer, B, Steffensen, JP. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–3.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.CrossRefGoogle Scholar
Kromer, B, Becker, B. 1993. German oak and pine 14C calibration, 7200–9439 BC. Radiocarbon 35(1): 125–35.CrossRefGoogle Scholar
Kromer, B, Spurk, M. 1998. Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon 40(3): 1117–26.CrossRefGoogle Scholar
Ralska-Jasiewiczowa, M, Demske, D, van Geel, B. 1998. Late-glacial vegetation history recorded in the Lake Gościąż sediments. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, central Poland. A monographic study, part 1. Kraków: Szafer Institute of Botany. p 128–43.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998. Revisions and extension of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3): 1107–16.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Warren Beck, J, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 Radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3): 1041–83.CrossRefGoogle Scholar