Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-13T20:17:16.107Z Has data issue: false hasContentIssue false

RADIOCARBON ANALYSIS AND STATUS REPORT FROM TÜRKIYE: 1MV NATIONAL AMS LABORATORY (TUBITAK-AMS)

Published online by Cambridge University Press:  10 March 2023

Turhan Doğan*
Affiliation:
TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Türkiye
Erhan İlkmen
Affiliation:
TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Türkiye
Furkan Kulak
Affiliation:
TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Türkiye
*
*Corresponding author. Email: turhan.dogan@tubitak.gov.tr

Abstract

In autumn of 2016, the National 1MV Accelerator Mass Spectrometry (AMS) Laboratory at The Scientific and Technological Research Council of Türkiye (TÜBİTAK), Marmara Research Center (MRC), Türkiye (Turkey), started to offer radiocarbon (14C) analysis service internationally. In this article, the process from sample acceptance to reporting and the primary procedures implemented and applied for 14C analysis at the TÜBİTAK AMS Radiocarbon Dating Laboratory are described. The service provided by the laboratory includes sample evaluation for 14C analysis, sample preparation, graphite production, AMS measurement, data supervision, calendar date calculations, and consultancy. For commercial testing and analysis, a one-page official report which shows the 14C age and uncertainty is provided for each sample. In addition to a dedicated wet chemistry laboratory to process samples before measurement with AMS, there are two systems for the conversion of CO2 to elemental carbon process; an automated graphitization system (AGE III) and a manual graphitization system based on a glass high vacuum line. A 1MV UAMS NEC Pelletron system installed in the laboratory is used for natural level 14C samples needed to be analyzed for archeological, geological, geographical, and environmental and forensic science applications. In addition to commercial 14C testing and analysis activities, national and international research projects can be developed or contributed to within the scope of project management or partnership.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aerts-Bijma, AT, Paul, D, Dee, MW, Palstra, SWL, Meijer, HAJ. 2020. An independent assessment of uncertainty for radiocarbon analysis with the new generation high-yield accelerator mass spectrometers. Radiocarbon 63(1):122.10.1017/RDC.2020.101CrossRefGoogle Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.CrossRefGoogle Scholar
Brock, F, Dee, M, Hughes, A, Snoeck, C, Staff, R, Bronk Ramsey, C. 2018. Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60(1):3550.10.1017/RDC.2017.68CrossRefGoogle Scholar
Brock, F, Geoghegan, BT, Thomas, B, Jurkschat, K, Higham, T. 2013. Analysis of bone collagen extraction products for radiocarbon dating. Radiocarbon 55(3–4):445463.10.1017/S0033822200057581CrossRefGoogle Scholar
Brock, F, Higham, T, Bronk Ramsey, CB. 2010a. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855865.10.1016/j.jas.2009.11.015CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010b. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.10.1017/S0033822200045069CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Cherkinsky, A. 2009. Can we get a good radiocarbon age from “Bad Bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51(2):647655.CrossRefGoogle Scholar
Dalsgaard, K, Odgaard, NV. 2001. Dating sequences of buried horizons of podzols developed in wind-blown sand at Ulfborg, Western Jutland. Quaternary International 78(1):5360.10.1016/S1040-6182(00)00115-4CrossRefGoogle Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.CrossRefGoogle Scholar
Doğan, T, İlkmen, E, Kulak, F. 2021. A new national 1 MV AMS laboratory at TÜBİTAK MRC in Turkey. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 509:4854.10.1016/j.nimb.2021.08.013CrossRefGoogle Scholar
Dunbar, E, Cook, G, Naysmith, P, Tripney, B, Xu, S. 2016. AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory. Radiocarbon 58(1):923.CrossRefGoogle Scholar
Hajdas, I, Michczyński, A, Bonani, G, Wacker, L, Furrer, H. 2009. Dating bones near the limit of the radiocarbon dating method: study case mammoth from Niederweningen, ZH Switzerland. Radiocarbon 51(2):675680.10.1017/S0033822200056010CrossRefGoogle Scholar
Kalin, RM. 2000. Radiocarbon dating of groundwater systems. In: Cook, PG, Herczeg, AL, editors. Environmental tracers in subsurface hydrology. Boston: Springer US. p. 114144.Google Scholar
Kristiansen, S, Dalsgaard, K, Holst, M, Aaby, B, Heinemeier, J. 2003. Dating of prehistoric burial mounds by 14C analysis of soil organic matter fractions. Radiocarbon 45(1):101112.CrossRefGoogle Scholar
Kutschera, W. 2016. Accelerator mass spectrometry: state of the art and perspectives. Advances in Physics X1:(4):570595.Google Scholar
Lanting, J, Aerts-Bijma, A, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249254.CrossRefGoogle Scholar
Molnár, M, Joó, K, Barczi, A, Szántó, Z, Futó, I, Palcsu, L, Rinyu, L. 2004. dating of total soil organic matter used in Kurgan studies. Radiocarbon 46(1):413419.10.1017/S0033822200039722CrossRefGoogle Scholar
Mook, WG, Streurman, HJ. 1983. Physical and chemical aspects of radiocarbon dating. Proceedings of the Groningen Conference on 14C and Archaeology. PACT Publication 8:3155.Google Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3):13581370.10.1017/S0033822200046440CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, P, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Kim, K, Hong, W, Park, J, Woo, H, Hodgins, G, Jull, A, Kim, J. 2011. Development of radiocarbon dating method for degraded bone samples from Korean archaeological sites. Radiocarbon 53(1):129135.10.1017/S0033822200034408CrossRefGoogle Scholar
Regev, L, Steier, P, Shachar, Y, Mintz, E, Wild, E, Kutschera, W, Boaretto, E. 2017. D-REAMS: a new compact AMS system for radiocarbon measurements at the Weizmann Institute of Science, Rehovot, Israel. Radiocarbon 59(3):775784.10.1017/RDC.2016.96CrossRefGoogle Scholar
Salazar, G, Szidat, S. 2021. Reassessment of uncertainty expansion by linear addition of long-term components from top-down information. Radiocarbon 63(6):16571671.CrossRefGoogle Scholar
Sava, TB, Simion, CA, Gâza, O, Stanciu, IM, Păceșilă, DG, Sava, GO, Wacker, L, Ştefan, B, Moşu, VD, Ghiţă, DG, Vasiliu, A. 2019. Status report on the sample preparation laboratory for radiocarbon dating at the new Bucharest ROAMS Center. Radiocarbon 61(2):649658.CrossRefGoogle Scholar
Scott, EM, Naysmith, P, Cook, GT. 2018. Why do we need 14C inter-comparisons?: the Glasgow 14C inter-comparison series, a reflection over 30 years. Quaternary Geochronology 43:7282.10.1016/j.quageo.2017.08.001CrossRefGoogle Scholar
Spalding, KL, Buchholz, BA, Bergman, LE, Druid, H, Frisen, J. 2005. Age written in teeth by nuclear tests. Nature 437:333334.CrossRefGoogle ScholarPubMed
Ubelaker, DH, Buchholz, BA, Stewart, JE. 2006. Analysis of artificial radiocarbon in different skeletal and dental tissue types to evaluate date of death. Journal of Forensic Sciences 51(3):484488.10.1111/j.1556-4029.2006.00125.xCrossRefGoogle ScholarPubMed
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.10.1006/jasc.1998.0385CrossRefGoogle Scholar
Wacker, L, Fülöp, R-H, Hajdas, I, Molnár, M, Rethemeyer, J. 2013. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294: 214217.10.1016/j.nimb.2012.08.030CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7–8):931934.CrossRefGoogle Scholar
Zondervan, A, Hauser, TM, Kaiser, J, Kitchen, RL, Turnbull, JC, West, JG. 2015. XCAMS: the compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:2533.10.1016/j.nimb.2015.03.013CrossRefGoogle Scholar