Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T16:13:39.358Z Has data issue: false hasContentIssue false

Radiocarbon AMS Dates for Paleolithic Cave Paintings

Published online by Cambridge University Press:  18 July 2016

H Valladas*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, F-91198 Gif-sur-Yvette Cedex, France
N Tisnérat-Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, F-91198 Gif-sur-Yvette Cedex, France
H Cachier
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, F-91198 Gif-sur-Yvette Cedex, France
M Arnold
Affiliation:
UMS 2004 (CNRS-CEA), Tandetron Bat.30, 91198 Gif-sur-Yvette, France
F Bernaldo de Quirós
Affiliation:
Universitad de León, Area de Prehistoria, 24071, León, Spain
V Cabrera-Valdés
Affiliation:
Universidad Nacional de Educatión a Distancia, c/Senda del Rey, 7, 28040 Madrid, Spain
J Clottes
Affiliation:
11 rue du Fourcat 09000 Foix, France
J Courtin
Affiliation:
100 Boulevard de la Libération, 13004 Marseille, France
J J Fortea-Pérez
Affiliation:
Universidad Oviedo, Area de Prehistoria y Arqueologia, 33006 Oviedo, Spain
C Gonzáles-Sainz
Affiliation:
Universidad de Cantabria, dpto Ciencias Historicas, Avda Los Castros, s/n, 39005 Santander, Spain
A Moure-Romanillo
Affiliation:
Universidad de Cantabria, dpto Ciencias Historicas, Avda Los Castros, s/n, 39005 Santander, Spain
*
Corresponding author. Email: Helene.Valladas@lsce.cnrs-gif.fr.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Advances in radiocarbon dating by accelerator mass spectrometry (AMS) have made it possible to date prehistoric cave paintings by sampling the pigment itself instead of relying on dates derived from miscellaneous prehistoric remains recovered in the vicinity of the paintings. The work at the Laboratoire des Sciences du Climat et de l'Environnement (LSCE) concentrated on prehistoric charcoal cave paintings from southern France and northern Spain. In most caves, pigment samples were collected from several paintings, and in some instances the sample size allowed for multiple independent measurements on the same figure, so that the coherence of the calculated dates could be tested. Before being dated, each specimen was subjected to a thermal treatment preceded by an acid and basic treatment of intensity commensurate with the sample size.

Nine bison drawings from three caves in the Cantabrian region of Spain—two from Covaciella, three from Altamira, and four from El Castillo—were sampled and dated. The 27 dates fell between 13,000 and 14,500 BP, allowing us to attribute the drawings to the Magdalenian period. The 24 dates for 13 drawings in the Cosquer cave indicated two distinct periods of painting activity—one around 28,000 BP and the other around 19,000 BP. The Chauvet cave paintings turned out to be the oldest recorded to date, as five dates fell between 32,000 and 31,000 BP. After discussing the sample preparation protocol in more detail, we will discuss the ages obtained and compare them with other chronological data.

Type
II. Our ‘Wet’ Environment
Copyright
Copyright © 2001 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alcalde del Rio, H, Breuil, H, Sierra, L. 1911. Les cavernes de la région cantabrique (Espagne). Monaco: A. Chene.Google Scholar
Arnold, M, Bard, E, Maurice, P, Duplessy, JC. 1987. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report. Nuclear Instruments and Methods in Physics Research B29:120–3.Google Scholar
Batten, RJ, Gillespie, R, Gowlett, JAJ, Hedges, REM. 1986. The AMS dating of separate fractions in Archaeology. Radiocarbon 28(2A):698701.Google Scholar
Bernaldo de Quiros, F. 1994. Reflexiones en la Cueva de Altamira. In: Lasheras, JA, editor. Homenaje al Dr Joaquin Gonzales Echegaray. Santander: Centro de Investigacion y Museo de Altamira. Monografias 17: 261–7.Google Scholar
Breuil, H, Obermaier, H. 1935. Cave of Altamira at Santillana del Maar, Spain. Madrid: Duque de Berwick y Alba.Google Scholar
Clottes, J, Courtin, J, Valladas, H, Cachier, H, Mercier, N, Arnold, M. 1992. La grotte Cosquer datée, Bulletin Société Préhistorique Française 89(8):230–4.Google Scholar
Clottes, J, Courtin, J. 1994. La grotte Cosquer. Edition Seuil. Paris.Google Scholar
Clottes, J, Chauvet, JM, Brunel-Deschamps, E, Hillaire, C, Daugas, JP, Arnold, M, Cachier, H, Evin, J, Fortin, P, Oberlin, C, Tisnérat, N, Valladas, H. 1995. Les peintures paléolithiques de la grotte Chauvet-Pont d'Arc, à Vallon- Pont-d'Arc (Ardèche, France): datations directes et indirectes par la méthode du radiocarbone. Paris. C. R. Acad. Sc. 320(IIa): 1133–40.Google Scholar
Clottes, J, Collina-Girard, J, Arnold, M, Valladas, H. 1997. News from Cosquer Cave; climatic studies, recording, sampling, dates. Antiquity 71(272):321–6.Google Scholar
Fortea Perez, FJ. 1996. La grotte de Covaciella (Carena de Cabrales, Asturies, Espagne). INORA 13: 13.Google Scholar
Gowlett, JAJ, Hedges, REM, Houseley, RA, Law, IA, Perry, C. 1987. Radiocarbon dates from the Oxford AMS system: dateiist 6. Archaeometry 29(2):289306.Google Scholar
Hedges, REM, Bronk Ramsey, C, van Klinken, GJ, Pettitt, PB, Nielsen-Marsh, C, Etchegoyen, A, Fernadez Niello, JO, Boschin, MT, Llamazares, AM. 1988. Methodological issues in the 14C dating of rock painting. Radiocarbon 40(1):3544.Google Scholar
Igler, W, Dauvois, M, Hyman, M, Menu, M, Rowe, M, Vezian, J, Walter, P. 1994. Datation radiocarbone de deux figures pariétales de la grotte du Portel (Commune de Loubens, Ariège). Bulletin Société Préhistorique Ariège-Pyrénées XLIX:231–6.Google Scholar
Loy, TH, Jones, R, Nelson, DE, Meehan, B, Vogel, J, Southon, J, Cosgrove, R. 1990. Accelerator radiocarbon dating of human blood proteins in pigments from Late Pleistocene art sites in Australia, Antiquity 64:110–6.Google Scholar
Moure Romanillo, A, Gonzales Sainz, C, Bernaldo de Quiros, F, Cabrera Valdes, V. 1996. Dataciones absolutas de pigmentos en cuevas cantabricas: Altamira, El Castillo, Chimeneas y Las Monedas. In: Moure Romanillo, A, editor. “El Hombre Fosil” 80 Anos Despues. Santander. p 295324.Google Scholar
Nelson, DE, Chaloupka, G, Chippindale, C, Alderson, MS, Southon, JR. 1995. Radiocarbon dates for beeswax figures in the prehistoric rock art of Northern Australia. Archaeometry 37(1):151–6.Google Scholar
Russ, J, Hyman, M, Shafer, J, Rowe, MW. 1990. Radiocarbon dating of prehistoric rock paintings by selective oxydation of organic carbon. Nature 348(20/27):710–1.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, FG, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Valladas, H, Cachier, H, Maurice, P, Bernaldo de Quiros, F, Clottes, J, Cabrera Valdes, V, Uzquiano, P, Arnold, M. 1992. Direct radiocarbon dates for prehistoric paintings at the Altamira, El Castillo and Niaux caves. Nature 357:6870.CrossRefGoogle Scholar
Valladas, H, Tisnérat, N, Cachier, H, Arnold, M. 1999. Datation directe des peintures préhistoriques par la méthode du carbone 14 en spectrométrie de masse par accélérateur, Actes du Colloque “C14 et Archéologie”, 1998. Mémoires de la Société Préhistorique Française, Tome XXVI et Supplément 1999 de la Revue d'Archéométrie. p 3944.Google Scholar