Skip to main content Accessibility help
×
Home

Potential Use of Archaeological Snail Shells for the Calculation of Local Marine Reservoir Effect

  • Carla Carvalho (a1), Kita Macario (a2), Maria Isabela De Oliveira (a2), Fabiana Oliveira (a2), Ingrid Chanca (a2), Eduardo Alves (a2), Rosa Souza (a3), Orangel Aguilera (a3) and Katerina Douka (a4)...

Abstract

Shellmounds are archaeological sites found across the Brazilian coast and form an important record of the human occupation of this area during the Holocene. The presence of both terrestrial and marine remains within the same archaeological context enables the comparison of different carbon reservoirs. There is only a small number of similar studies for the coast of south-southeastern Brazil. Previous work was based on the analysis of pre-bomb shells from museum collections and paired charcoal/marine shells from archaeological sites. This article assesses the potential use of terrestrial shells as representative of atmospheric carbon reservoir in the calculation of the marine reservoir effect (MRE) of the southeastern Brazilian coast. The presence of both terrestrial and marine shells over several archaeological layers represents a great potential for calculating reservoir corrections and their temporal variation.

Copyright

Corresponding author

Corresponding author. Email: carlacarvalho@geoq.uff.br.

References

Hide All
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57(4). doi:10.2458/azu_rc.57.18404.
Angulo, RJ, Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47(1):6773.
Ascough, PL, Cook, GT, Dugmore, AJ, Barber, J, Higney, E, Scott, EM. 2004. Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 46(2):611–20.
Ascough, PL, Cook, GT, Dugmore, AJ. 2009. North Atlantic marine 14C reservoir effects: implications for late-Holocene chronological studies. Geochronology 4(3):171–80.
Bayes, TR. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society 53:370418.
Barnhardt, MC. 1992. Acid-base regulation in pulmonate molluscs. The Journal of Experimental Zoology 263:120–6.
Breure, ASH. 1979. Systematics, phylogeny and zoogeography of Bulimulinae (Mollusca). Zoologische Verhandelingen Leiden 168:1215.
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720–30.
Buck, CE, Litton, CD, Smith, AFM. 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19(5):497512.
Culleton, BJ. 2006. Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California. Journal of Archaelogical Sciences 33(9):1331–9.
Culleton, BJ, Kennett, DJ, Ingram, BL, Erlandson, JM, Southon, JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387400.
Eastoe, CJ, Fish, S, Fish, P, Gaspar, MD, Long, A. 2002. Reservoir corrections for marine samples from the South Atlantic coast, Santa Catarina State, Brazil. Radiocarbon 44(1):145–8.
Evin, J, Marechal, J, Pachiaudi, C, Puissegur, JJ. 1980. Conditions involved in dating terrestrial shells. Radiocarbon 22(2):545–55.
Fernandes, R, Bergemann, S, Hartz, S, Grootes, PM, Nadeau, M-J, Melzner, A, Rakowski, A, Hüls, M. 2012. Mussels with meat: bivalve tissue-shell radiocarbon age differences and archaeological implications. Radiocarbon 54(3–4):953–65.
Goodfriend, GA. 1987. Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29(2):159–67.
Goodfriend, GA, Hood, DG. 1983. Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25(3):810–30.
Goodfriend, GA, Stipp, JJ. 1983. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11:575–7.
Goodfriend, GA, Ellis, GL, Toolin, LJ. 1999. Radiocarbon age anomalies in land snail shells from Texas: ontogenetic, individual and geographic patterns of variation. Radiocarbon 41(2):149–56.
Gordon, JE, Harkness, DD. 1992. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: implications for reservoir corrections in radiocarbon dating. Quaternary Science Reviews 11(7-8):697708.
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0-50,000 years cal BP. Radiocarbon 55(4):1889–903.
Hua, Q, Barbetti, M, Rakowski, AJ. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4):2059–72.
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46(3):1059–86.
Ikeda, Y, de Miranda, LB, Rock, NJ. 1974. Observations on stages of upwelling in the region of Cabo Frio (Brazil) as conducted by continuous surface temperature and salinity measurements. Boletim Instuto Oceanográfico, São Paulo 23:3346.
Kennett, DJ, Ingram, BL, Erlandson, JM, Walker, P. 1997. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, Southern California. Journal of Archaeological Science 24(11):1051–9.
Kneip, LM. 2001. O sambaqui de Manitiba I e outros sambaquis de Saquarema, RJ. Documentos de Trabalho (5) Série Arqueologia, Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro. 91 p.
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherkinsky, A. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2-3):325–30.
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Marques, AN, Alves, EQ, Oliveira, FM, Chanca, IS, Carvalho, C, Anjos, RM, Pamplona, FC, Silva, EP. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56(2):489–99.
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC, Marques, AN, Anjos, RM, Pamplona, FC. 2015. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:14–9.
Nadal de Masi, MA. 2001. Pescadores coletores da costa sul do Brasil. Pesquisas Antropologia 57:1136.
Petchey, F, Ulm, S, David, B, McNiven, I, Asmussen, B, Tomkins, H, Dolby, N, Aplin, K, Richards, T, Rowe, C, Leavesley, M, Mandui, H. 2013. High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, Southern Coastal Papua New Guinea. Archaeological and Anthropological Sciences 5(1):6980.
Pigati, JS, Rech, JA, Nekola, JC. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519–32.
Quarta, G, Romaniello, L, D'Elia, M, Mastronuzzi, G, Calcagnile, L. 2007. Radiocarbon age anomalies in pre- and post-bomb land snails from the coastal Mediterranean basin. Radiocarbon 49(2):817–26.
Rakovan, MT, Rech, JA, Pigati, JS, Nekola, JC, Wiles, GC. 2013. An evaluation of Mesodon and other larger terrestrial gastropod shells for dating late Holocene and historic alluvium in the Midwestern USA. Geomorphology 193:4756.
Rech, JA, Nekola, JC, Pigati, JS. 2012. Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA. Quaternary Research 77(2):289–92.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–87.
Romaniello, L, Quarta, G, Mastronuzzi, G, D'Elia, M, Calcagnile, L. 2008. 14C age anomalies in modern land snails shell carbonate from southern Italy. Quaternary Geochronology 3(1–2):6875.
Rubin, M, Likins, RC, Berry, EG. 1963. On the validity of radiocarbon dates from snail shells. Journal of Geology 71(1):84–9.
Russell, N, Cook, GT, Ascough, PL, Dugmore, AJ. 2010. Spatial variation in the marine radiocarbon reservoir effect throughout the Scottish post-Roman to late Medieval period: North Sea values (500–1350 BP). Radiocarbon 52(3):1166–81.
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon-evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.
Soares, AMM, Dias, JMA. 2007. Reservoir effect of coastal waters off western and northwestern Galicia. Radiocarbon 49(2):925–36.
Stott, LD. 2002. The influence of diet of the δ13C of shell carbon in the pulmonate snail Helix aspersa . Earth and Planetary Letters 195(3–4):248–59.
Stuiver, M, Braziunas, T. 1993. 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.
Tamers, MA. 1970. Validity of radiocarbon dates on terrestrial snail shells. American Antiquity 35(1):94100.
Xu, B, Gu, Z, Han, J, Hao, Q, Lu, Y, Wang, L, Wu, N, Peng, Y. 2011. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6(3–4):383–9.
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1):320–9.
Yanes, Y, Romanek, CS, Molina, F, Cámara, JA, Delgado, A. 2011. Holocene paleoenvironment (7,200–4,000 cal. years BP) of the Los Castillejos archaeological site (SE Spain) as inferred from stable isotopes of land snail shells. Quaternary International 244:6775.
Yanes, Y, Gutiérrez-Zugasti, I, Delgado, A. 2012. Lateglacial to Holocene transition in northern Spain deduced from land-snail shelly accumulations. Quaternary Research 78(2):373–85.
Yates, TJS. 1986. Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. Radiocarbon 28(2A):457–63.
Zaarur, S, Olack, G, Affek, HP. 2011. Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta 75(22):6859–69.
Zhou, W, Head, WJ, Wang, F, Donahue, D, Jull, AJT. 1999. The reliability of AMS radiocarbon dating of shells from China. Radiocarbon 41(1):1724.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed