Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:42:52.931Z Has data issue: false hasContentIssue false

OSL Dating of Earthen Mortars from a Medieval Building in Northwestern Spain: Crypt of Basílica da AscensiÓn (Allariz, Ourense)

Published online by Cambridge University Press:  04 August 2020

Jorge Sanjurjo-Sánchez*
Affiliation:
University Institute of Geology, University of A Coruña, ESCI, Campus de Elviña, 15071A Coruña, Spain
Rebeca Blanco-Rotea
Affiliation:
Santiago de Compostela University, Facultade de Xeografía e Historia, 15782Santiago de Compostela, Spain
Marco V García-Quintela
Affiliation:
Santiago de Compostela University, Facultade de Xeografía e Historia, 15782Santiago de Compostela, Spain
Christopher Ian Burbidge
Affiliation:
Environmental Protection Agency of Ireland, Dublin, Ireland
*
*Corresponding author. Email: jorge.sanjurjo.sanchez@udc.es.

Abstract

There are few papers that focus on optically stimulated luminescence (OSL) dating of earthen mortars. These mortars are abundant in historical buildings in northwestern Spain. The Basílica da AscensiónyForno da Santa building is an unfinished church built on a previous structure that was transformed into a crypt (Allariz, Ourense, NW Spain). Previous archaeological studies established a sequence of phases of construction, the first dating back to the Iron Age, with significant changes occurring in the Early and Late Medieval ages. The only datable material in the crypt is earthen mortar. Thus, eight mortar samples (seven joint mortars and one wall infill) were taken, seven of them dated by OSL. The dose rate was assessed, and the expected equivalent doses estimated based on the established archaeological age. Several grain sizes (from fine to coarse) were used in small multigrain aliquots to assess the equivalent doses and ages. No evidence of partial bleaching was observed in most samples and grain sizes. The resulting ages are younger than expected for most samples. This is explained by the fact that joints were repaired with new mortar from the 16th century onwards.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Arnold, LJ, Demuro, M, Navazo Ruiz, M. 2012. Empirical insights into multi-grain averaging effects from pseudo” single-grain OSL measurements. Radiation Measurements 47:652658. doi: 10.1016/j.radmeas.2012.02.005.CrossRefGoogle Scholar
Arnold, LJ, Duval, M, Demuro, M, Spooner, NA, Santonja, M, Perez-Gonzalez, A. 2016. OSL dating of individual quartz “supergrains” from the Ancient Middle Palaeolithic site of Cuesta de la Bajada, Spain. Quatrrnary Geochronology 36:78101. doi: 10.1016/j.quageo.2016.07.003.CrossRefGoogle Scholar
Blanco-Rotea, R, Mañana-Borrazás, P, Mato-Fresán, C, Rodríguez-Costas, A. 2009. La basílica de la Ascensión y Os Fornos (Allariz, Ourense). Revista Aquae Flaviae 41:467478.Google Scholar
Blanco-Rotea, R, García Rodríguez, S, Mato-Fresán, C, Sanjurjo-Sánchez, J. 2015. La Basílica da Ascensión y Os Fornos (Allariz, Ourense) y la cristianización de la arquitectura en la Antigüedad Tardía. Estudos do Quaternário 12:111132. doi: 10.30893/eq.v0i12.117.CrossRefGoogle Scholar
Boyle, RW. 1982. Geochemical prospecting for thorium and uranium deposits. Elsevier.Google Scholar
Brennan, BJ. 2003. Beta doses to spherical grains. Radiation Measurements 37:299303. doi:10.1016/S1350–4487(03)00011-8.CrossRefGoogle Scholar
CSN. 2017. Cartografia del potencial de radón en España. 1:200.000. National Council of Nuclear Security (Consejo de Seguridad Nuclear), Spain. In Spanish.Google Scholar
Duller, GAT. 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4):589612. doi: 10.1007/s10816-008-9053-9.CrossRefGoogle Scholar
Feathers, JK, Johnson, J, Kembel, SR. 2008. Luminescence dating of monumental stone architecture at Chavín De Huántar, Perú. Journal of Archaeological Methods and Theory 15: 266296. doi: 10.1111/j.1502-3885.2008.00051.x.CrossRefGoogle Scholar
Galbraith, RF, Roberts, RG, Laslett, GM, Yoshida, H, Olley, JM. 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Sherlter, Northern Australia: Part 1, Experimental design and statistical models. Archaeometry 41:339364. doi: 10.1111/j.1475-4754.1999.tb00987.x.CrossRefGoogle Scholar
García Quintela, MV. 2014. Marina concubina, Marina virgen, Boand adúltera: fecundidad extra-marital y creación de paisajes. In: Tausiet M, Tropé H, editors. Folclore y leyendas en la península ibérica. En torno a la obra de François Delpech, Madrid, CSIC. p. 57–80.Google Scholar
García Quintela, M, Santos Estévez, M. 2015. Iron Age saunas of northern Portugal: state of the art and research perspectives. Oxford Journal of Archaeology 34(1):6795. doi: 10.1111/ojoa.12049.CrossRefGoogle Scholar
Gascoyne, M. 1992. Geochemistry of the actinides and their daughters. In: Ivanovich, M, Harmon, RS, editors. Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. Oxford: Clarendon Press. p. 3462.Google Scholar
Guerin, G, Mercier, N, Adamiec, G. 2011. Dose-rate conversion factors: update. Ancient TL 29:58.Google Scholar
Guibert, P, Christophe, C, Urbanová, P, Blain, S, Guérin, G. 2017. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: towards a new tool for single grain OSL dating of poorly bleached mortars. Radiat Meas 107:4857. doi: 10.1016/j.radmeas.2017.10.003.CrossRefGoogle Scholar
Heer, AJ, Adamiec, G, Moska, P. 2012. How many grains are there on a single aliquot? Ancient TL 30(1):916.Google Scholar
Jacobs, Z, Roberts, R. G. 2007. Advances in optically stimulated luminescence dating of individual grains from archeological deposits. Evolutionary Anthropology 16(6):210223. doi: 10.1002/evan.20150.CrossRefGoogle Scholar
Madsen, AT, Murray, AS. 2009. Optically stimulated luminescence dating of young sediments: a review. Geomorphology 109(1–2):316. doi: 10.1016/j.geomorph.2008.08.020.CrossRefGoogle Scholar
MARNA. 2000. Map of natural gamma radiation of Spain. Collection. National Council of Nuclear Security (Consejo de Seguridad Nuclear), Spain. In Spanish.Google Scholar
Mayya, YS, Morthekai, P, Murari Madhav, K, Singhvi, AK. 2006. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution Radiation Measurements 41(7–8):10321039. doi: 10.1016/j.radmeas.2006.08.004.CrossRefGoogle Scholar
Medialdea, A, Thomsen, KJ, Murray, AS, Benito, G. 2014. Reliability of equivalent-dose determinationand age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology 22:1124. doi: 10.1016/j.quageo.2014.01.004.CrossRefGoogle Scholar
Murray, AS, Wintle, AG. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32:5773. doi: 10.1016/S1350–4487(99)00253-X.CrossRefGoogle Scholar
Murray, AS, Wintle, AG. 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements 37:377381. doi: 10.1016/S1350–4487(03)00053-2.CrossRefGoogle Scholar
Panzeri, L, Cantù, M, Martini, M, Sibilia, E. 2017. Application of different protocols and age-models in OSL dating of earthen mortars. Geochronometria 44:341351. doi: 10.1515/geochr-2015-0072.CrossRefGoogle Scholar
Prescott, JR, Hutton, JT. 1994 Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long term variations. Radiation Measurements 23:497500. doi: 10.1016/1350–4487(94)90086-8.CrossRefGoogle Scholar
Sánchez-Pardo, JC, Blanco-Rotea, R, Sanjurjo-Sánchez, J. 2017a. The church of Santa Comba de Bande and early medieval Iberian architecture: new chronological results. Antiquity 357:10111026. doi: 10.15184/aqy.2017.83.CrossRefGoogle Scholar
Sanchez-Pardo, JC, Blanco-Rotea, R, Sanjurjo-Sanchez, J. 2017b. Tres arquitecturas altomedievales ourensanas: Santa Eufemia de Ambía, San Xés de Francelos y San Martiño de Pazó. Arqueología de la Arquitectura 17:e062. doi: 10.3989/arq.arqt.2017.017.Google Scholar
Sanchez-Pardo, JC, Blanco-Rotea, R, Sanjurjo-Sanchez, J, González-García, AC. 2018. Cronotipología y datación absoluta de iglesias altomedievales en Galicia. Primeros resultados del proyecto EMCHAHE. Hortus Artium Medievalium 24: 90104. doi: 10.1484/J.HAM.5.115940.CrossRefGoogle Scholar
Sanchez-Pardo, JC, Blanco-Rotea, R, Sanjurjo-Sanchez, J, Barrientos-Rodríguez, V. 2019. Reusing stones in medieval churches: a multidisciplinary approach to San Martiño de Armental (NW Spain). Archaeological and Anthropological Sciences 11(5):20172096. doi: 10.1007/s12520–018-0655-1.CrossRefGoogle Scholar
Sanjurjo-Sánchez, J. 2016. Dating historical buildings: an update on the possibilities o absolute dating methods. International Journal of Architectural Heritage 10:620635. doi: 10.1080/15583058.2015.1055384.CrossRefGoogle Scholar
Sanjurjo-Sánchez, J, Gómez-Heras, M, Fort, R, Álvarez de Buergo, M, Izquierdo, R, Bru, MA. 2016. Dating fires and estimating the temperature attained on stone surfaces. The case of Ciudad de Vascos (Spain). Microchemical Journal 127:247255. doi: 10.1016/j.microc.2016.03.017.CrossRefGoogle Scholar
Sanjurjo-Sánchez, J, Barrientos, Rodríguez V. 2018. Reevaluación del potencial geotérmico de los granitos de Galicia en base a cartografía geoquímica y radiológica. Cadernos do Laboratorio Xeolóxico de Laxe 40:123138.Google Scholar
Sanjurjo-Sánchez, J, Blanco-Rotea, R, Sanchez Pardo, JC. 2019. An interdisciplinary study of Early Mediaeval churches in North–Western Spain (Galicia). Heritage 2(1):599610. doi: 10.3390/heritage2010039.CrossRefGoogle Scholar
Stella, G, Fontana, D, Gueli, AM, Troja, SO. 2013. Historical mortars dating from OSL signals of fine grain fraction enriched in Quartz. Geochronometria 40:153164. doi: 10.2478/s13386-013-0107-8.CrossRefGoogle Scholar
Stella, G, Almeida, L, Basilio, L, Pasquale, S, Dinis, J, Almeida, M, Gueli, AM. 2018. Historical building dating: a multidisciplinary study of the convento of Sao Francisco (Coimbra, Portugal). Geochronometria 45:119129. doi: 10.1515/geochr-2015-0089.CrossRefGoogle Scholar
Urbanová, P, Hourcade, D, Ney, C, Guibert, P. 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre Palais-Gallien in Bordeaux. Radiation Measurements 72:100110. doi: 10.1016/j.radmeas.2014.11.014.CrossRefGoogle Scholar
Urbanová, P, Guibert, P. 2017. Methodological study on single grain OSL dating of mortars: Comparison of five reference archaeological sites. Geochronometria 44:7797. doi: 10.1515/geochr-2015-0050.CrossRefGoogle Scholar
Viveen, V, Sanjurjo-Sanchez, J, Goy-Diz, A, Veldkamp, A, Schoorl, JM. 2014. Paleofloods and ancient fishing weirs in NW Iberian rivers. Quaternary Research 84:5665. doi: 10.1016/j.yqres.2014.04.011.CrossRefGoogle Scholar
Wallinga, J. 2002. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21:1726.Google Scholar