Skip to main content Accessibility help
×
Home

Optical Detection of Radiocarbon Dioxide: First Results and AMS Intercomparison

  • I Galli (a1), S Bartalini (a1), P Cancio (a1), P De Natale (a1), D Mazzotti (a1), G Giusfredi (a1), M E Fedi (a2) and P A Mandò (a2)...

Abstract

The first results of an optical method for measuring radiocarbon concentrations, based on mid-infrared laser spectroscopy of a carbon dioxide gas sample, are presented with the theoretical bases explained in detail. The first measurements on modern and highly enriched samples show the extreme linearity of this technique over more than 5 decades. An intercomparison with accelerator mass spectrometry (AMS) is performed both for modern and 14C-dead samples, assessing the almost perfect agreement of their respectively measured concentration values. The main features of our technique are compared with liquid scintillation counting (LSC) and AMS, and future developments of the current setup are discussed.

Copyright

Corresponding author

2 Corresponding author: davide.mazzotti@ino.it.

References

Hide All
Bartalini, S, Borri, S, Cancio, P, Castrillo, A, Galli, I, Giusfredi, G, Mazzotti, D, Gianfrani, L, De Natale, P. 2010. Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. Physical Review Letters 104:083904.
Bartalini, S, Borri, S, Galli, I, Giusfredi, G, Mazzotti, D, Edamura, T, Akikusa, N, Yamanishi, M, De Natale, P. 2011. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Optics Express 19(19):17,99618,003.
Bennett, CL, Beukens, RP, Clover, MR, Gove, HE, Liebert, RB, Litherland, AE, Purser, KH, Sondheim, WE. 1977. Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198(4316):508–10.
Cappelli, F, Galli, I, Borri, S, Giusfredi, G, Cancio, P, Mazzotti, D, Montori, A, Akikusa, N, Yamanishi, M, Bartalini, S, De Natale, P. 2012. Subkilohertz linewidth room-temperature mid-IR quantum cascade laser using a molecular sub-Doppler reference. Optics Letters 37(23):4811–3.
Faist, J, Capasso, F, Sivco, DL, Sirtori, C, Hutchinson, AL, Cho, AY. 1994. Quantum cascade laser. Science 264(5158):553–6.
Faist, J, Gmachl, C, Capasso, F, Sirtori, C, Sivco, DL, Baillargeon, JN, Cho, AY. 1997. Distributed feedback quantum cascade lasers. Applied Physics Letters 70(20):2670.
Fedi, ME, Cartocci, A, Manetti, M, Taccetti, F, Mandò, PA. 2007. The 14C AMS facility at LABEC, Florence. Nuclear Instruments and Methods in Physics Research B 259(1):18–22.
Fedi, ME, Bernardoni, V, Caforio, L, Calzolai, G, Carraresi, L, Manetti, M, Taccetti, F, Mandò, PA. 2013. Status of sample combustion and graphitization lines at INFN-LABEC. Radiocarbon, these proceedings.
Galli, I, Bartalini, S, Borri, S, Cancio, P, Giusfredi, G, Mazzotti, D, De Natale, P. 2010. Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. Optics Letters 35(21):3616–8.
Galli, I, Bartalini, S, Borri, S, Cancio, P, Mazzotti, D, De Natale, P, Giusfredi, G. 2011. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Physical Review Letters 107:270802.
Giusfredi, G, Bartalini, S, Borri, S, Cancio, P, Galli, I, Mazzotti, D, De Natale, P. 2010. Saturated-absorption cavity ring-down spectroscopy. Physical Review Letters 104:110801.
Kutschera, W. 2005. Progress in isotope analysis at ultratrace level by AMS. International Journal of Mass Spectrometry 242(2–3):145–60.
Labrie, D, Reid, J. 1981. Radiocarbon dating by infrared laser spectroscopy. A feasibility study. Applied Physics 24(4):381–6.
Murnick, DE, Peer, BJ. 1994. Laser-based analysis of carbon isotope ratios. Science 263(5149):945–7.
Murnick, DE, Dogru, O, Ilkmen, E. 2008. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Analytical Chemistry 80(13):4820–4.
Murnick, DE, Dogru, O, Ilkmen, E. 2010. 14C analysis via intracavity optogalvanic spectroscopy. Nuclear Instruments and Methods in Physics Research B 268(7–8):708–11.
Romanini, D, Kachanov, AA, Sadeghi, N, Stoeckel, F. 1997. CW cavity ring down spectroscopy. Chemical Physics Letters 264(3–4):316–22.
Rothman, LS, Gordon, IE, Barbe, A, Benner, DC, Bernath, PF, Birk, M, Boudon, V, Brown, LR, Campargue, A, Champion, J-P, Chance, K, Coudert, LH, Dana, V, Devi, VM, Fally, S, Flaud, J-M, Gamache, RR, Goldman, A, Jacquemart, D, Kleiner, I, Lacome, N, Lafferty, WJ, Mandin, J-Y, Massie, ST, Mikhailenko, SN, Miller, CE, Moazzen-Ahmadi, N, Naumenko, OV, Nikitin, AV, Orphal, J, Perevalov, VI, Perrin, A, Predoi-Cross, A, Rinsland, CP, Rotger, M, Šimečková, M, Smith, MAH, et al. 2009. The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 110(9–10):533–72.
Schulze-König, T, Dueker, SR, Giacomo, J, Suter, M, Vogel, JS, Synal, H-A. 2010. BioMICADAS: compact next generation AMS system for pharmaceutical science. Nuclear Instruments and Methods in Physics Research B 268(7–8):891–4.
Synal, H-A, Wacker, L. 2010. AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nuclear Instruments and Methods in Physics Research B 268(7–8):701–7.

Optical Detection of Radiocarbon Dioxide: First Results and AMS Intercomparison

  • I Galli (a1), S Bartalini (a1), P Cancio (a1), P De Natale (a1), D Mazzotti (a1), G Giusfredi (a1), M E Fedi (a2) and P A Mandò (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed