Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-gszfc Total loading time: 0.362 Render date: 2022-06-29T03:49:17.747Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13

Published online by Cambridge University Press:  09 February 2016

Alan Hogg*
Affiliation:
Radiocarbon Laboratory, University of Waikato, PB 3105, Hamilton 3240, New Zealand
Chris Turney
Affiliation:
ARC Laureate Fellow, Climate Change Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Jonathan Palmer
Affiliation:
Geography, CLES, University of Exeter, Exeter, Devon EX4 4RJ, United Kingdom Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
John Southon
Affiliation:
Keck-CCAMS Group, Earth System Science Dept., University of California, Irvine, B321 Croul Hall, Irvine, California 92697, USA
Bernd Kromer
Affiliation:
Heidelberg Academy of Sciences, University of Heidelberg, Germany
Christopher Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Rd., Oxford OX1 3QY, United Kingdom
Gretel Boswijk
Affiliation:
Tree-Ring Laboratory, School of Environment, University of Auckland, PB 92019, Auckland, New Zealand
Pavla Fenwick
Affiliation:
Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
Alexandra Noronha
Affiliation:
Keck-CCAMS Group, Earth System Science Dept., University of California, Irvine, B321 Croul Hall, Irvine, California 92697, USA
Richard Staff
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Rd., Oxford OX1 3QY, United Kingdom
Michael Friedrich
Affiliation:
Hohenheim University, Institute of Botany (210), Garbenstrasse 30, D-70593 Stuttgart, Germany
Linda Reynard
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Rd., Oxford OX1 3QY, United Kingdom Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, Massachusetts 02138, USA
Dominik Guetter
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich, Switzerland
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich, Switzerland
Richard Jones
Affiliation:
Geography, CLES, University of Exeter, Exeter, Devon EX4 4RJ, United Kingdom
*
Corresponding author. Email: alan.hogg@waikato.ac.nz.
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wc describe here the New Zealand kauri (Agathis australis) Younger Dryas (YD) research project, which aims to undertake Δ14C analysis of ∼140 decadal floating wood samples spanning the time interval ∼13.1–11.7 kyr cal BP. We report 14C intercomparison measurements being undertaken by the carbon dating laboratories at University of Waikato (Wk), University of California at Irvine (UCI), and University of Oxford (OxA). The Wk, UCI, and OxA laboratories show very good agreement with an interlaboratory comparison of 12 successive decadal kauri samples (average offsets from consensus values of –7 to +4 14C yr). A University of Waikato/University of Heidelberg (HD) intercomparison involving measurement of the YD-age Swiss larch tree Ollon505, shows a HD/Wk offset of ∼10–20 14C yr (HD younger), and strong evidence that the positioning of the Ollon505 series is incorrect, with a recommendation that the 14C analyses be removed from the IntCal calibration database.

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Blockley, SPE, Lane, CS, Hardiman, M, Rasmussen, SO, Seierstad, IK, Steffensen, JP, Svensson, A, Lotter, AF, Turney, CS, Bronk Ramsey, C, INTIMATE members. 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36:210.CrossRefGoogle Scholar
Boswijk, G, Fowler, A, Lorrey, A, Palmer, J, Ogden, J. 2006. Extension of the New Zealand kauri (Agathis australis) chronology to 1724 BC. The Holocene 16(2):188–99.CrossRefGoogle Scholar
Brock, F, Higham, TFG, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.CrossRefGoogle Scholar
Buckley, B, Ogden, J, Palmer, J, Fowler, J, Salinger, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri). 1. Climate correlation functions and master chronology. Journal of the Royal Society of New Zealand 30:263–75.CrossRefGoogle Scholar
Fowler, A, Palmer, J, Salinger, J, Ogden, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri): 2. Evidence of a significant relationship with ENSO. Journal of the Royal Society of New Zealand 30:277–92.CrossRefGoogle Scholar
Fowler, A, Boswijk, G, Lorrey, AM, Gergis, J, Pirie, M, McCloskey, SPJ, Palmer, JG, Wunder, J. 2012. Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nature Climate Change 2(3):172–6.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.CrossRefGoogle Scholar
Hogg, AG. 1993. Performance and design of 0.3 ml to 10 ml synthetic silica liquid scintillation vials. In: Noakes, JE, Polach, HA, Schönhofer, F, editors. Liquid Scintillation Spectrometry 1992. Tucson: Radiocarbon, p 135–42.Google Scholar
Hogg, AG, Fifield, LK, Turney, CSM, Palmer, JG, Galbraith, R, Baillie, MGL. 2006. Dating ancient wood by high sensitivity liquid scintillation counting and accelerator mass spectrometry – pushing the boundaries. Quaternary Geochronology l(4):241–8.Google Scholar
Hogg, AG, Fifield, LK, Palmer, JG, Turney, CSM, Galbraith, R. 2007. Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range. Radiocarbon 49(2):379–91.CrossRefGoogle Scholar
Hogg, A, Palmer, J, Boswijk, G, Turney, C. 2011. High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC–AD 995. Radiocarbon 53(3):529–42.CrossRefGoogle Scholar
Hoper, ST, McCormac, FG, Hogg, AG, Higham, TFG, Head, MJ. 1998. Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40(1):4550.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, K, Friedrich, M, Kromer, B, Levchenko, V, Zoppi, U, Smith, A, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.CrossRefGoogle Scholar
Kaiser, KF. 1993. Beiträge zur Klimageschichte vom Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Winterthur: Ziegler Druck- und Verlags-AG. 203 p.Google Scholar
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Remmele, S, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Late-glacial tree-ring chronologies from Europe absolute—an inventory. Quaternary Science Reviews 36:7890.CrossRefGoogle Scholar
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, KF, Remmele, S, Schaub, M, Talamo, S. 2004. Lateglacial 14C ages from a floating, 1382–ring pine chronology. Radiocarbon 46(3):1203–9.CrossRefGoogle Scholar
Ogden, J, Wilson, A, Hendy, C, Newnham, RM, Hogg, A. 1992. The late Quaternary history of kauri Agathis australis in New Zealand and its climatic significance. Journal of Biogeography 19:611–22.CrossRefGoogle Scholar
Palmer, J, Lorrey, A, Turney, CSM, Hogg, AG, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779–87.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506–19.CrossRefGoogle Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Turney, CSM, Fifield, LK, Palmer, JG, Hogg, AG, Baillie, MGL, Galbraith, R, Ogden, J, Lorrey, A, Tims, SG. 2007. Towards a radiocarbon calibration for Oxygen Isotope Stage 3 using New Zealand kauri (Agathis australis). Radiocarbon 49(2):447–57.CrossRefGoogle Scholar
Turney, C, Fifield, K, Hogg, A, Palmer, J, Hughen, K, Baillie, M, Galbraith, R, Ogden, J, Lorrey, A, Tims, S, Jones, R. 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago). Quaternary Science Reviews 29(27–28):3677–82.CrossRefGoogle Scholar
Walker, M, Johnsen, S, Rasmussen, SO, Popp, T, Steffensen, JP, Gibbard, P, Hoek, W, Lowe, J, Andrews, J, Bjorck, S, Cwynar, LC, Hughen, K, Kershaw, P, Kromer, B, Litt, T, Lowe, DJ, Nakagawa, T, Newnham, R, Schwander, J. 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24(1):317.CrossRefGoogle Scholar
Wigley, TML, Briffa, KR, Jones, PD. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23:201–13.2.0.CO;2>CrossRefGoogle Scholar
Xu, X, Khosh, M, Druffel-Rodriguez, K, Trumbore, S, Southon, J. 2010. Is the consensus value of ANU sucrose (IAEA C-6) too high? Radiocarbon 52(2–3):866–74.CrossRefGoogle Scholar
You have Access
33
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *